
AD-AGAG 301 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/6 9/2
DETAILED DESIGN OF THE KERNEL OF A REAL-TINE MULTIPROCESSOP OPEETC(U)

UNCLASSIFIED NL*2flflflfllllf l /
lllllllllllll
IIIIIEEIIIIEI
lElEllllEEEI
El~llllE~lllEE
ElllllllEEllE
EIIE//l/I

iiii12 11._o 2.5
11.028 111122
III ,_,- , _ IIIII

1111I25 1111"--4 II'.6

MICROCOPY RiSOLUJIJN I fS (IAfI

-I

'LEYELI
NAVAL POSTGRADUATE SCHOOL

Monterey, California

< DTIC
MELECTE

%6. DEC 02 1980: J

THESIS
DETAILED DESIGN OF THE KERNEL OF A

REAL-TIME MULTIPROCESSOR

OPERATING SYSTEM

by

Warren James Wasson

June 1980

Thesis Advisor: U. R. Kodres

r. Approved for public release; distribution unlimited

I.

• Jtp -, ., ,, .

ICCU111IV CLASSIFICATION 09 ?"IS 40649 Vhf af Dom e 010M*WDdNTUC~

REPORT DOCUMENTATION PAGE ba3m %MPICG ORM
REP101ORT NUlon a.40U AeC98410 .~ a. MIGISPSENYTS CATALOG NUmaSIL1

14.r TI.S Itfod SU"IftOI * !YP9LQt !wP9ITAsthafto Covireco
Detild esin f heKernel of a ~' Master's Thesisr

Real-Time Multiprocessor Operating Jun PUROrMN n.11011Tkme
System, .*aouN ne sothms

7. Au wo*0fej 1. COSOTRACT OR1 GRANT NUROEjR(qj

Warren Jameswcsn____________

*-' . oil nORNSWGORG0ANmIAION WN AND ADDRESS /I.PROGRAN ELEMNNT PRjECT. TASKI

Naval Postgraduate School A aRE S WOR UNIT NUMa tS

Monterey, California 93940

Naval Postgraduate School Jun 1~l 980
Monterey, California 93940 Is136S ,RAI

M0 MCITORINE A49kCV whoouE A ACOUESII #0110oun ig Cemaaa.le 0UR0) is. SGCURITV CLASS. (at Ohio -K*.n

Naval Postgraduate School -/ /Unclassified
Monterey, California 93940 IA &

It. OSTRISUTION STATEENT (*I Ohio Rewt

Approved for public release; distribution unlimited

17. DISTB UTION SIATEMINTH (of I&* pafeout meetdom in eet JO. Of Afferet ft *00Wf)

to. SUP010EM8EN7ANS NOTES

IS. 491Y WORD$ (Cooiftm d Fever" sode o 0166141F a a n d Identofp bpor W e

Multiprocessing, parallel processing, operating system, kernel,
multiprogrammiung, processor multiplexing.

26 AGSTR"ACT (CON10001e 40 VVVW0& 0108 It 086011FM 1111111opR60 l ftit'A l ie .ej

This thesis describes the detailed design of a distributed
operating system for a real-time, microcomputer based
multiprocessor system.

Process structuring and segmented address spaces comprise
the central concepts around which this system is built. The
system particularly supports applications where processing
is partitioned into a set of multiple processes. One such

':~,1473£OgTOw@:mgfleg *CUS14?V CLAGNPICATION OR ?"11111104411 ON.. ON0w0

Se* , I _e a.-M16 ,u oT o" us O peeav- = O.O M ---

20. (Continuation of abstract)

area is that of digital signal processing for which this
system has been specifically developed.

The operating system is hierarchically structured to
logically distribute its functions in each process. This
and loop-free properties of the design allow for the
physical distribution of system code and data amongst
the microcomputers. In a multiprocessor configuration,
this physical distribution minimized system bus contention
and lays the foundation for dynamic reconfiguration.

Accession for

NTIS QPAi
DDC TAB
Unannounceod
Justification

By

Dl .s r ibu tioMLtn .

h1rnt C:, 'ty Codes

Aail and/or
Dist special

ft

*1

DD.I ,r 1473
2

Approved for public release; distribution unlimited

Detailed Design of the Kernel of a Real-Time
Multiprocessor Operatinp System

by

Warren J. Wasson
Lieutenant, United States Navy

B.S., United States Naval Academy, 1975

Submitted in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June, 19Ee

Author: _ __

---- --- ---- --- -----------------------

Approved by:

:; Thesis Advisor

-- ---------------- T-esi--Advi-or

Second Reader

rmp, ?oputer science
/p

S---Dean of Information and Policy Sciences

3

ABSTRACT

This thesis describes the detailed design of a

distributed operating system for a real-time, microcomputer

based multiprocessor system.

Process structuring and segmented address spaces

comprise the central concepts around which this system is

built. The system particularly supports applications wtere

processing is partitioned Into a set of multiple processes.

One such area is that of digital signal processin- for which

this system has been specifically developed.

The operating system is hierarchically structured to

logically distribute its functions in each process. This and

loop-free properties of the design allow for the physical

distribution of system code and data amongst the

microcomputers. In a multiprncessor configuration, this

physical distribution minimizes system bus contention and

lays the foundation for dynamic reconfiguration.

4

TABLE OF CONTENTS

I . INTRODUCT ION .. 11
A. DISCU5SiON1

B. STRUCTURE OF THE THESIS........................13

II. FUNDAMENTAL DESIGN CONCEPTS 15

A. DESIGN PHIIOSOPHY

B . SFQrTF.ITIAL PROCESSES................... 16

1. Definition of a Process.................... 16

2. Process Address Space 1,

a. Virtual Memory and Segrimentatior 15

b. Addressing in a Seerented Syster 1S

C. INTeR-PROCESS Sr'NC1R ONIZATION AVD COMMUNICATION.1;

D. PROCrESSOR ULTIPIXIN......................2

1. Definition of Processor Multiplexing 22

2. Processor Virtualization 2e

a. Virtual Processors Z

3. Two-Level Processor Multiplexing o2

* a. The Traffic Controller 22

* b. The Inner Traffic Controller 22

4. Processor Multiplexing Strategy 20

[a. Process State Transitions 23

b. Virtual Processor State Transitions 24

II vL'LTIF"OCESSOR ARCEITECTI 27

A. HARDWARE RFOUIREMENTS 27

5

I Sharei Global memory.---.... . .27

2. Multiprocessor Synchronization Support 27

3. Inter-Processor Communication 27

Z. FAF rEAFE CCNFIGUATIO 28

1. System Confipuration Ze

2. Specific Fardware Employed 28

a. 1he 8e 6 Microprocessor 26

b. The 86/12A Single Board Microcomputer...29

c. Preempt Interrupt Fariware Connection...%3

d. The System 3us 33

C. ARD'iARE ASS?$SSMZNT s o 22 3

IV. tFTAIIED SYSTFM DESIGN 34

A. STRICTURE OF THE OPMRATING SYSTEM 34

B. rISTRIBUTING TFE OPERATING SYSTEM 35

C. REAL-TIME PROCESSING 36

D. PROCESS ADDRESS SPCES 36

1. The P./M'-6 Stack 37

2. The Stack as the Address Spdce Tnescriptor...37

E. SYSTF PFCCESSES 38

1. The idle Virtual Processor l

F. SYNCFRCNIZAI ION 41
1. vvetcounts 6........ i

2. Sequencers 43

3. Inter-Irocess Synchronization...............44

G. TFF INNER TRAFFIC CONTPOLLF 6

1. General Description j6

t 6

2. Virtual Processor Scheduler (Vp_5cheduler)..4E
a. Internal flodules "1

(1) FdwrInt 51

3. Inner Traffic Controller interface flodules..51

a. LoadVp 51

b. Idle Vp 52

c. I tcRetVp 53

d. CheckPre_-Tmpt 53

e. Send _Pre _Empt 54

f. Ite Await F4

F. Itc Advance55

H. THE TRAFFIC CONTROLLER 6

1. General Description 56

2. Process Scheduler (Scheduler) 59

a. Internal Modules 6e

(1) Locate Evc 60

(2) LocateSeq U{

3. Traffic Controller Interface Modules 61

a. Await 61

b. Advanee 62

c. Ticket 63

d Read .6

e. To Pe andler 65
Sd. Create Evc 65

p. Create_Seq 66

I

,h. CreateProcess 66

7

... - - .

I. THE SUPERVISOR 67

1. "eneral Description 67

2. Supervisor Invocation (The Gate) 69

V. CONC LUS IONS *........... 69

A. SUMMAPY OF RESULTS 69

U. FURTHER RESEARCH7V

APPE NDIX A - PROGRAMMING 72

APFFNDIT B - KERNEL MODULES %...................... IC5

?BIBLIOGRAPEw134

I I4'TIAL DISTRIBUTION LIST 136

I
i

LIST OF FIGURES

1. Process State Transitions 26

2. Virtual Processor State Transitions 26

3. Multiprocessor Configuration 31

4. Preempt Interrupt Connection 32

5. PIIM Stack Structure 39

6. Stack Usage For Process Address Space............... 40

7. The Virtual Processor Map.o..................... 47

8. The Active Process Table 57

9. Example PL/M-E6 Propram oooo....... 74:

10. Three Processes Executing Sequentially...............75

11. Declaration of Eventcount and Sequencer Names........75

12. Creating an Eventcount 61

13. Creatine a Sequencero.. 1

14. The Read Operation 3

15. The Await Operation. 3

16. The Advance Operation 63

17. The Ticket Operation......... 83

1E. Example Code for Program Al o......... 86

19. Example Code for Program A2......................... e7

2e. Example Code for Program A3............... SE

21. Flow of Control in Parallel Processing 91

22. Parallel Processing Example Process A392

*,. • 23. Mutual Exclusion xamjle 94

>*

24. Printer Process for Mutual Exclusion Example 95

25. Processes Al - Ak for Mutual Exclusion Examrple 96

26. Kernel Call External Procedure Declarations 1T

4 10

I. INTRODUCTION

A. DISCUSSION

The topic of this thesis is the detailed desipn of the

kernel of a real-time microcomputer based multiprocessor

operatinR system. The kernel comprises a complete, alteit

primitive, operating system providing support for a large

number of asynchronous processes.

The kernel manages all physical processor resources

thereby providing the user with an execution envirorment

relatively free from concern about the underlylnp hardware

configuration. The system is capable of parforming In a

real-time environment through the use of preemptive

schedulinp to ensure expeditious handlin of time-critical

processing requirements.

Despite the rapidly expandine capabilities of modern

microcomputer systems, they still prove to be limited by the

relatively slow execution speeds of their microprocessors.

These systems generally do not provide the pcwer and

flexibility required to address complex and dematdinF

applications. One such area is that cf real-time digital

image processing. This is a particularly demanding

application area characterized by the requirement to apply

significant processing power to a high input data rate.
&

{1

A natural answer to the inadequacies of the lone

microcomputer is to provide for multiple m.icroccrputer

systems. Such systems could provide the processing power to

adequately handle applications which are presently addressed

only within the domain of minicomputers and mainframe

systems. Fowever, the peneral purpose microcomputer

operating system which would control such a system does not

exist today. Most of today's microcomputer operatine systems

deal only with uniprccessors and, in fact, could not

adequately manage multiple processors.

The integration of large numbers of relatively

inexpensive microcomputers into powerful computer systems

has been the subject of intensive research in universities

and industry for several years. As a result, a number of

multiple microcomputer systems such as Carnep.!e-Mellon's Crr*

[1e] have been built and even more such as the varied

architectures of Anderson and Jensen (1] have been

suprested. The Cm* is an ambitious system with 5e processors

and a complex, custom designed and built bus structure [I@].

Most of the proposed systems require this type of

specialized hardware. The primary thrust of this thesis is

towards a general control structure which can be applied to

hardware systems that are commercially availatle today with

only very minor or no hardware development. Thus no serious

attempt is made to consider alternative hardware

architectures as a topic in this research.

ii 12

A complete high level operating system design was

provided by O'Connell and Richardson [11] in their farrily of

secure multiprocessor operating systems. This thesis

concerns itself with the detailing, of one member of their

family, a modified real-time subset. The mcdifIcation

consists of the inclusion of a more general synchronization

mechanism, eventcounts and sequencers described by Reed and

Kanodia (13] which replace the more traditional Signal/Wait

and Block/Wakeup used in the original design.

The system supports multiple asynchronous processes

usine the concept of two-level traffic control to accoirplish

processor multiDlexing amongst a greater number of eligible

processes. This dual-level processor multiplexinF desien

allows the system to treat the two primary scheduling

decisions, viz., the scheduling, of processes and the

management of proCessors at two separate levels of

abstraction.

B. STRUCTURE OF TFE TFESIS

Chapter ir describes the overall design philosophy cf

the operatinp system, how multiple processes are

synchronized and how their multiplexing on a smaller set of

processors is accomplished. Chapter 3 describes the hardware

architecture of the multiprocessor system in termrs of the

particular hardware suite chosen for this system. Chapter IV

discusses the details of the kernel desip-n. The final

413

dP. no

chapter presents conclusions and observations that resulted

from this effort and suggestions for further research. 'o

appendices are also provided, an explanatien of programm1ne

methodology for this system and a detailed description of

the kernel modules in their present form.

14

II. FUNDAMENTAL DESIGN CONCEPTS

A. DESIGN PHILOSOPHY

Multiple processor systems are intrinsically more

complex then the familiar uniprocessor. Their com plexity has

proven to be the major barrier to realizing the full

potential of the inherent parallelism available in such a

system.

One of the most important components of any computer

system is the operating system. The operating system manages

the system's resources. Thus system performance is

critically dependent upon its effectiveness. However,

performance is not just raw computational speed, but is in

reality the sum-total of numerous attributes. Some of these

system attributes such as ease of programming, correct

operation, and the ability to address diverse applications

are as important as speed and efficiency, but too often are

overlooked. Because of this potentially very large set of

requirements, adequate performance can only be assured if

the behavior of the system is well understood by the

designer. Of necessity, this imposes a strict requirement

for simplicity.

In this design, the requirement for simplicity is

satisfied by utilizing a model based on the notion of

multiple asynchronous processes with segmented address

15

spaces. This is the central unifying concept which provides

a straightforward view of both static and dynamic system

behavior [4]. The principles of structured system desitn are

also applied to logically organize the operating system into

a hierarchically structured set of easily understood modules

whose interactions are clearly specified and strictly

enforced.

The result is a modular, layered operating sytem which

is both smaller and easier to analyze. This, in turn makes

it easier to ensure correct operation and provides better

opportunity for improving performance through tuning.

Certain other benefits accrue from simplificaton as well.

Because the sytern is smaller, less memory is used for

operatine system code and less processor time is spent in

its executior.

E. SEQUENTIAL PROCFSSES

1. Definition of a Process

The concept of a process has proven to be a

fundamental and powerful one in the organization of computer

systems. The rather abstract idea of a process has been

defined in numerous ways, but perhaps the simplest is

offered by J. Saltzer as:

...basically a program in execution on a processor." r17]

In considering the above definition, it tecomes

apparent that there are two elements which together

416

completely characterize a given process. They are 1) the

program, consisting of any sequentially executed machine

instructions and data which can be associated wit"* the

program (usually termed the process' address space) and, 2)

the execution state of the process which is characterized ty

the contents of certain processor registers.

2. The Process Address Space

The address space, sirplistically, -rovides for the

encapsulation of a process such that it has no knowledge of

any other process and no other process has knowledge of it.

This eli"tirates the possibility of inter-process

interference simply tecause processes are unable to "escape"

the confines of their defined address spaces.

However, this is rather restrictive in that

processes which are totally ignorant of each other have no

hope of co-operating towards the accomplishrent cf sore

greater coal. In order to mediate this constraint, one

desirs to allow some restricted (controlled) forr- of

address space overlap (viz., sharing) such that co-operation

is allowed while still retaiinR the benefits of protection

offered by isolation. Snarino requires some way cf

distinguishing the shared portions of the address space.

This is greatly facilitated by introducing the nctIc r of

memory segmentation.

I P

4 ___

a. Virtual Memory and Sepmentation

Virtual memory is used to implement the concept

of a per process address space. In Multics [2], each process

is provided with its own virtual memory for an address

space. These virtual memories are completely independent of

one another.

A virtual memory consists of a set of sepr'ents.

Sements are distinct variable size memory objects which

contain information. Associated with a serment is a set of

logical attributes used to uniquely identify the segment and

to control access to it.

In specifying the set of segments that comprise

a virtual memory, one may include seements that are part of

other virtual memories as well. Thus segments can be shared

in a controlled manner to provide for inter-process

communication and co-operation.

By using segmentation to provide a virtual

memory environment, the user is presented with a

configuration independent system in that ne "sees" a process

address space that he can consider his own and is not

dependent on the assignment of physical iddresses.

b. Addressing in a Segmented System

Addressing in a segmented memory system Is

two-dimensional. That is, a complete address consists of twc

parts. The first is the sement rtpber. This Identifies the

particular segmert of interest. One attribute of the segmezt

4I I I I I I I

is the physical address of the segment's base. Thus the

segment can be located anywhere in physical memory by

changing the base address. The second dimension of the

address is an offset relative to the seement's tase (the

beginning of the segment). This serves to access specific

locations within the segment.

C. INTER-PROCESS SYNCHRONIZATION ANt COMMUNICATION

Utilizinz the parallelism affordel by rultiple

processors requires a mechanism for inter-process

communication and synchronization. It is used for

controlling the execution of processes and coordirating the

sharing of data.

The most widely used synchronization primitives are

Dijkstra's semaphores [3] or Saltzer's Block and Wakeup F17]

which were used in O'Connell ard Richardson's original

design [1i1. However, the design decision was made to use a

different mechanism which addresses the questions of

confinement in a secure system. This is the synchronization

mechanism based on the eventcounts and sequencers of ,eed

and Kanodia £13).

-41

D. PROCESSOD MULTIPIEZXING

1. refinition of Processor Yultiplexinz

Processor multiplexing, is a technique for sharin'

scarce processor resources among an arbitrarily large number

of processes. It is accomplished by simulating the existence

of a larger number of virtual processors. This technique is

widely used in conventior~al uniprocessor systems whEre it is

commonly called multiprogramming. it seeks to maximize the

use of the available hardware by automating control of

process loading and execution. It also greatly increases the

flexibility of a system allowing it to be effective in more

complex and demandine applications.

S. H. Saltzer (17] presented one of the fundamental

works on the subject of processor multiplexin,. His tbesis

provides an excellent treatise of the salient issues.

2. Processor Virtualization

In order to effect processor multiplexing, the

physical processor resources (those hardware devices that

execute macnine instructions) are virtualized by creatir,

abstract processors called virtual processors.

a. Virtual Processors

,ach physical processor posseses sorme interral

memory (recisters) whose contents describe the processor's

state. As part of the processor state, there is a

specification of the accessible address space wl ich contaiLs

the instructions and data used by thp processor.

4

,, w

Virtual processors are simulations of

processors. They can be viewed in essentially the same way

as physicdl processors in that they execute the same

instructions. However, the instruction set of a virtual

processor has been expanded to include some instructions

which the physical processors do not directly have. These

include "instructions" to "load" a process, certain

synchronication primitives, system service calls, etc.

Virtual processors exist only as abstract

processors represented by a data structure. They are useJ as

the vehicle for the control and manipulation of processor

resources.

3. Two-Level Processor Multiplexing

In this design, there are two levels of processor

multiplexing. This design arose from the existence of

multiple physical processors. Each of the levels address a

distinct requirement. One level supports virtual processor

management, that is, the provision of inter-process

synchronization. The other supports the management of

physical resources by the operating system.

This divides the requirements for multlpleKirn--

mechanisms into two parts. One of these addresses

multiplexinp virtual processors among processes and the

other multiplexinv physical processors am onP virtual

processors.

4 21

a. The Traffic Controller

The Traffic Controller represents the upper level

of processor multiplexinR (termed level *2' and provides the

mechanism for multiplexing virtual processors aircng

processes. Thus it is responsible for inter-process

synchronization.

As an example, consider that a process, called A,

will wish to synchronize its actions with another process.

called B, such that process 2 will have to ccmplete some

task before A can continue execution. Thus A will execute to

the point where it cannot proceed further and wishes to

sipnal process B. W'hen process B has finished its task, it

must notify process A of its completion so that process A

may then proceed.

This inter-process synchronization is handled at

the level of the Traffic Controller. When process A

discovered that it could not proceed further. it ",ave away"

its virtual processor to some process that could run. The

Traffic Controller suspended the execution of process A and

," a new process was bound to the virtual processor. In the

same way, when B completes, viz., it has no more work to

perfcrm, it will also eive its virtual processor away.

b. The Inner Traffic Controller

The Inner Traffic Controller corprises the

lower level of processor multiplexing (level 1) and provides

the second set of multiplexing functions. It multiplexes the

4 22

physical processor amone one or irore virtual processors.

While the virtual processors have identical capabilities,

the physical processors may differ in their capabilities,

viz., they may have different attached I/C devices,

different local memory sizes, etc. The Inner Traffic

Controller must manage the physical resources in such a way

that the user is unaware of these differences. In

particular, the system's interrupt system is managed by the

Inner Traffic Controller.

If a user process calls upon some system service.

such as disk I/O or I/O for a real-time sensor, it must wait

for that service to be completed tefore it can proceed. The

performance of a system service is considered to be part cf

the requesting processes. However, it may actually be

supported by another virtual processor. To control this

interaction the Inner Trafffic Controller ircvides the

required inter-virtual processor synchronization mechanism.

In particular, a physical system interrupt is directly

transformed into a synchronization signal to a waiting

virtual processor. This structure is particularly impcrtant

for the support of real-time Drocessing.

4. Processor Multiplexing Strategy

a. Process State Transitions

Fieure 1 illustrates the state transitions of a

set of processes as a virtual processor is multiplexed arrone

them. Some elipible process (one which is in the ready

423

state) is scheduled to run and is bound to the virticl

processor. At this time, the prccess trakes the transition to

the running state. As far ds the process is concerned, once

it enters the running state, it is execiiting.

At some point in its executior, the process may

desire to block itself or signal another process. If it

blocks itself (enters tne blocked state), it will pive up

the virtual processor to which it is presently bound an!

will be out of contention for processor resovrces. It will

remain in the blocked state until some other process sigrals

it (thus rrakinR the transition back to the ready state). If

the process signals other processes, it will transition from

the runnine state back to the ready state fror which it may

be scheduled to run azain. In doing so. it allows the

Traffic Controller to possibly give the virtual processor to

some higher priority process which rray be ready to run.

b. Virtual Processor State Transitions

Figure 2 illustrates the state transitions rrake

by virtual processors as a physical oro!essor Is

multiplexed. This diagram is very similar to that of Figure

1. However, these transitions are not directly observeable

by processes (except as differences in execution times) as

virtual processor state transitions result from the

management of physical resources by the operating system.

In Figure 2, it can be seen that a running

* •virtual processor can transition to the waitine state or the

24

ready state. The transition to the waiting state occurs when

a virtual processor must wait for completion of some system

service (analogous to the blocking of process A in the

example riven in paragraph a). While in the waitin, state,

the virtual processor is out of contention for processor

resources until another virtual processor signals it to

continue. While in the ready state, the virtual processor is

in contention for processor resources and so may be

scheduled to run on the physical processor.

25

PROCESS STATE TFANSITIONS

Figure 1

Ready aitin

Virtal Vrtua

III. MULTIPROZESSOR ARCHITECTURE

A. FARDWAPF P QUI R vTN T S

One of the principal desizn Roals of the system design

was to provide for configuration independencp. Therefore,

the operatinR system imposes but a few constraints on the

hardware that are noted here.

1. Shared Global Memory

"he operating- system maintains system-wide control

data accessible to each of the processors via shared

segments. The communication path utilized for sharing this

data is shared emory. Thus some shared memory must be made

available to each microcomputer in such a way as to allow

independent access at the level of single memory references.

2. Multiprocessor Synchronization Support

There must exist some hardware-supported

multiprocessor synchronization primitive. This can be any

form of an indivisible read-alter-rewrite merrory reference.

This capability is required to imdlement Plobal locks on

shared data to prevent race conditions as the physical

processors attempt to asynchronously manipulate shared data.

3. Inter-Processor Communication

Some method of communication between physical

processors must be provided. This is satisfied by an ability

to generate interrupts between the physical processors. This

27

.. .

capability is required for the implementation of preemptive

schedulin?.

B. HARDWARE CONFIGURATION

1. System Confieuration

The hardware sub-system is confieured as a

multiprocessor [i]. The system consists of^ a numter of

single board microcomputers and a elobal memory module

connected by a single snared bus. The system differs from

conventional multiprocessors in that each of the

microcomputers possesses its own local memory. Tte Plobal

memory module is connected directly to the system bus an! is

the only physical rremory resource which is shared by all of

the pro-essors. The general configuratio is shown

schematically in Figure 3.

2. Specific Hardware Employed

The particular hardware selected for this

implementation is based on the INT-t 66/12A sinple board

microcomputer [6]. This microcomputer utilizes the INTE

EeS6, a 16-bit Peneral-purpose microprocessor capable of

directly addressing a total of 1 mega-byte of physical

memory.

a. The R 86 Microprocessor

The -C66 does not support the notion of explicit

sepmentation. In the e086, addressing is segment-like in

that base ani offset addressing is used. The offsets are

b28

f ormed relative to one of the four segment base reeisters of

the 806: 1) the Code Segment Repister, used for addressing

a pure sepment containing executable code, 2) tle rata

Segment Register, used for prccess local data, 3) the Stack

Segment Feeister, used for the per process stacks, and 4)

and the Extra Segment Register, typically used for external

or shared data.

In the N-66, a segment can range anywhere up to

64 kilo-bytes in length. Segments can be placed anywhere

within the 1 mera-byte address space of the E-E6 as long as

the segment base is placed on an even hexadecimal merory

address. Segment access and bounds checkina are not

supported. Although there is no general segmentation

hardware, this design effects a segmented address space

through a combination of operating system support and system

initialization conventions described in a companion thesis

by Ross [VI].

b. The 86/12A Single Board Microcomputer

The F6/12A is a complete computer capable of

stand-alone oDeraticn used as the basic processing ncde of

the multiprocessor. It is a commercial product which

satisfies the three basic hardware requirements for this

operatinF system. First, possessine a system bus Interface,

earh microcomputer is capable of independently arcessine a

global shared memory via the system bus. Secondly, the Pe-6

CPU supports multiprocessor synchronlzaton directly wit an

4 29

indivisitle test-and-set semaphore instrrction performed

under bus lock. Lock semaphores reside in the shared global

memory sirce the system bus must be locked to ensure tnat

this instruction operates correctly. Thirdly, preempt

irterrupts can be generated by using the parallel I/O ports

provided on each microcomputer. This requires conrecting the

microcoMputer's parallel I/O ports to the system interrupt

structure.

c. Preempt Interrupt Fardware Connection

As with most microprocessors, the Se itself

does not possess the capability to directly generate

interrupts destined for other devices (the devices of

interest here are other processors). The syster interrupt

lines are accessible through a Jumper matrix [63 located on

the microcomputers. The parallel I/0 port output of each

ISBC 86/12A is connerted to this interrupt dumper matrix.

Preempt interrupts are then generated simply by ovtputtinr a

single word throuph the parallel port onto the system

interrupt lines. The connection is shown in Figure 4.

Note that only a single interrupt line is

actually required to implement system-wide preempt

interrupts. In this implementation, four lines are used.

This provides four unique interrupt lines. If more than four

processors are used in the system, then these lines are

multiplexed (viz., several processors share an interrupt

line).

!3

.jA

86/12A
Sinple Poard
Mi crocomputer

Parallel
1/0 R Ot, RAM

Serial
1/0 CP U

T Global
* S

T Shared

*M Mem-ory

* U
S

P6/12A
Single Board
Mi c roeam Pu t er

P a rallel
1/0 ROM RAM

S er ial1
I/C C P U

MULTIPROCESSOR CONFIGUPFATION

Figure 3

31

26/12A
Single Poard
Microcomputer

Parallel
I/O
Port

* * T
---- - - -- -

* * To
To Interrupt -- --..--To** ULTI1US

Controller .. I r' *Interruyrt
Input . ..

* * * lines

Connect the Connect parallel
required preempt port output to
interrupt input these jumper
line from the posts.VIULTIBUS.

PREEMPT INTERRUPT CONN-CTION

Fiure 4

32

d. The System Bus

The Intel MULTIBUS [6] is utilized as the system

bus. It is a widely used commercial product with a published

set of standards. This bus is specifically designed to

support multiple processors and is fully compatible with the

microcomputers used. It is utilized without modification.

C. EA~rIOARE ASS-.SSvNr

The commercially available E6/12A single board

microcomputer was chosen because it was specifically

designed to provide support for multiple processor systems.

In vsing the operating systen described in the next chapter

to manax.e the microcomputer's physi:al resources, this

microcomputer is entirely suitable for use as a basic

processinp node of an effective multiprocessor system.

33

T

IV. DETAILED SY5TEM "ESIGN

A. FTRUCTURE OF TEE OPEEATING SYSTEV

This operatine system provides a mul ti prorarmeI

multiprocessor system with segmented process address spaces

usinp the hardware described in Chapter III. The operatinR

system is structured as a hierarchy of three levels [11], as

follows:

level 3: Supervisor

level 2: Traffic Controller

level 1: Inner Traffic Controller

The Inner Traffic Controller (Level 1) forms the

bottom level of the hierarchy. It is "closest" to the

hardware and encompasses the major machine-dependent aspects

of the system. The Inner Traffic Controller multiplexes the

physical processor amongst a pool of more numerous virtual

processors.

Pesiding at the next level (level 2) is the Traffic

Controller, which is responsible for multiplexine virtual

processors among a larger number of user processes ccr peting

for resources. The user-accessible Inter-process

communication and synchronization primitives (Advanca, Await

and Ticket) provided at this level allow the user to easily

address complex system-wide inter-pro,!ess synchronization

requlrements.

144

The Supervisor resides at the topmost level (level

3). The Supervisor's purpose is to provide common services

for user processes. In this implementation, it orly provides

a simple higher order language interface to the kernel by

havine a single entry point into the kernel.

a. rITPTBUTING THE OPE!RATING STSTEM

One cf the primary concerns in any multiple computer

systPm is the issue of performarce. In this type of system,

a multiprocessor with a single shared system bus, the most

glarine potential bottleneck is the system bus. It then

beccrrps highly desirable to minimize accesses to this

resource that must be shared by all of the microcomputers.

In terms of the desi, n. the described system is a

distributed operatinp system patterned after 'ultlcs (12].

In particular, the segments of the operatin, system kernel

are distributed as part of the address space of pac.

process. In terms of the irplementation of ttis system, t.e

performance Issue is addressed ty physically distributine

copies of the kernel in the local memories of each cf the

microcomputers. This allows high-speed access to kernel

functiors without necessitatin, use of the system bus for

code fetches.

Thus each computing node can be retarded as

semi-autonomous in that each of the processors schedule

tnemselves but are still centrally controlled by the set of

k

system-wide data tables. There is no concept of a

master-slave relationship amone individual mizrocorputers,

nor are individual kernel functions divided up awong ther as

is more often done. Rather the entire kernel is distrilutea.

C. RALI-TIME PROCESSING

Real-time processing involves the performance of

time-critical processing often related to the control of

external devices. This application requires that scme

mechanism be employed to ensure that time-critical

processing is riven immediate attention.

The hardware-supported process preemptior mechanism

employed in the System provides tha rapid response required

for real-time processing. The priority-drivan preemptive

scheduline technique used provides for expediticus handliL,

of processes which perform time-critical functio-s. These

processes are assijned high priorities so tha t the system

will preempt other processes of lower priority that ray be

r'innIng. Thus whEn one of these hih-priorit' prccesses is

signalled, it can te i.mediately scheduled and Pair. ccrtrol

of processor resources.

D. PROCFUSS ADDRESS SPACES

The address space of a process Is a set of F1/v-E6

segments: procedures (code), local varialles (data',

36

external data (shared data), and stack [12,131]. -hysical

memory is allocated to the segments of a process in such a

way as to lirrit system bus contention, as discussed ,y Eoss

[16). In this system, the stack is a key eleuent in the

manapement of processes.

1. The PI/M-66 Stack

Intel's high order ianguape PL/M-F6 F5, i] utilizes

stack segrents to implement per process stacks. Addressing

of stacks is accomplished by using three of the Ee6"s

registers as shown in Figure 5. The Stack Segment (SS)

ReGister contains the base location of the stack segment in

memory. The Stack Pointer (SP) Register addresses the

current toD of the stack as an offset from the lase of the

stack Seprent, (the value in the SS Reeister). The Base

Pointer (EP) '.egister also holds an offset from the SS

ReIstar and is used to establish procedure activation

records [7, F, 9].

2. The Stack as the Address Szace -,escriptor

In this system, the per nrocess stacks are used to

maintain process state information. This includes the

current execution point (when the process is not actually

running), the type of return from the 'ernel required for

the process (normal or interrupt) and the locations of the

code and data segments. This allows the syster to swap in a

new address .space (viz., do a cortext switch) tv chanoing

37

the value in the SS Register, which is thus used in a manner

somewhat analogous to the Multics Descriptor Base Register

[12].

Figure 6 shows how this information is stored in the

stack while a process is not actually running on a physical

processor. The Base Pointer, Stack Pointer and Return Type

Indicator are stored in reserved locations at the very

beginning of the stack segment.

In order to identify the stack segment, and thus

access the address space of a process, the stack segrent

base address is used in a dual role. First, a unique base

address is assined to the stack of each process which

provides a unique segment for each stack. This base address

is used for addressing locations within the stack. Secondly,

the base address serves as a descriptor for the address

space of each process. Thus the binding of a processor is

chan .ed from one process to another "merely" by chan ,in-? the

base address, viz., changing the value in the Stack Segment

(F S) '-epis ter.

E. STSTEM PROCESSES

System processes make up the non-distributed kernel.

Non-distributed refers to the fact that these processes are

not distrituted as part of each process' address space.

Rather they represent various system services. System

processes are used for the mandgement of hardware resources

High
Memory

~B P
Base Pointer.
Stack marker for

Direction of Growth activation records.
of the Stack

Stack Pointer.
Points to current
top of the stack.

-ss

Stack Segment.
Points to base
address of stack
segment.

Low
Memory

PL/M Stack Structure

Figure 5

39

CPU Flag Register Contents

Return Segment Address
(CS Register Contents)

Return Offset
(IP Register Contents)

Data Segment Address
(DS Register Contents)

and

Contents of General Repisters

Return Type Indicator Flae

Base Pointer (BP) Register Value

Stack Pointer (SP) Reg-ister Value

Stack Usa 'e For Process Address Space

Figure 6

0

and execute asynchronously with respect to user processes.

In this design, all system processes are permanently bound

to dedicated virtual processors.

1. The Idle Virtual Processor

The idle virtual processor provides the physical

processor with a consistent state when no other virtual

processor is ready to be run. The idle virtual processor

assures that physical processors always have some valid

process address space to execute in, althoueh in this case

it is only an idle process that performs no useful work.

This is assumed by creating for each physical

processor a dedicated idle virtual processor. The idle

virtual processors act as "default" that will only be run

when no other runnable virtual processors are found.

F. SYNCFRONIZATION

Synchronization is required at two levels in this

system: between processes (at the Traffic Controller level)

and between virtual processors (at the Inner Traffic

Controller level). Both levels use the eventcovnt and

sequencer mechanisms [13] described below.

1. Zventcounts

Eventcounts are used in this systerr to allow

processes to arbitrate access to shared resources.

41

F-'

An eventcourt is defined by Reed to be:

an object in the system that represents a class of events

that will eventually occur." [14]

Each eventcount represents a distinct class of events. An

eventcount is associated with some type of event of

interest, e.g., occurrence of a real-time interrupt, a

buffer becoming full, a data segrent being read or written

into, etc. Eventcounts are implemented as sets of positive

integers from £ to infinity (the limit is actually 65,536

usinp PI/M-86 "'word" variables which is "adequate" for the

applications anticipated) and are used to keep track of the

total number of such events that have occurred.

Three operations are defined on eventcounts. The

value of an eventcount may be obtained by the READ

operation. This returns the present value of the eventcount

as a positive integer k. From this value, one may infer that

events 0 to k have already occurred.

The AWAIT operation allows a process to suspend its

own execution (enter the blocked state) until a specified

event has occurred, viz., the eventcount reaches the value

specified. The effect is the same as the conventional M1ock

operation or Dijkstra's P" operator.

An ADVANCE operation is performed by a process when

an event has occurred. It increments the value of the

eventcount by one to reflect the occurrence of the event.

This has the effect o! signalling the event's cccurrence to

42

-4

other processes which were waiting for it by virtue of

having previously performed an AWAIT operation. The effect

of an ADVANCE operation is essentially the same as a Wakeup

operation or Dijkstra's "V" operator.

The eventcount signalling mechanism has an automatic

broadcast effect which offers an advantage ir parallel

processinG. This broadcast capability allows the

simultaneous sinallinp of several processes which otherwise

would would have to be signalled sequentially-

2. Sequencers

There are many situations where accesses to shared

resources must be totally ordered. Eventcounts alone are not

sufficient to accomplish this. To provide the capability for

mutual exclusion, another type of object called a sequencer

[13] is employed. A sequencer is implemented as a positive

inte-er ranging in value from e to infinity (as with

eventcounts, the limit is 65.,5%6). Fowever, a sequencer is

used to provide total order to the occurrence of events.

initially a sequencer has a value of e. The value increases

by one each time a TICKET operation is performed cn it.

TICKET is the only operation defined on a sequencer. TICKET

returns a unique monotonically increasing value wit' each

call. Thus, a set of events can be totally ordered by the

TICKFT operation.

43

3. Inter-Process Synchronization

Access to shared resources is easily controlled by

using evertcounts and sequencers in concert, as shown in the

following "producer/consumer" example [13].

Consider that some hypothetical consumer -process

called Printer uses a single input buffer in which it finds

information to be processed (output to the printer). There

are also an unknown number of producer processes called

PPOr1, PPOD2, etc., which have information that they want

Printer to output for them. Obviously, with a sinple buffer,

only one of the processes can use the buffer at any one

time. The solution uses one sequencer and two eventcounts to

properly mediate access to the buffer using mutual

exclusion.

The sequencer Turn is used by the producer processes

to synchronize their use of the input buffer. The

eventcounts Full and Empty are used to synchronize with

Printer. Each of the producer processes will execute the

program shown below.

PPOD1, PROD2, etc. /* Producer programs

DO;
T = TICKET(TURN); /* Get a "ticket" (turn) /

/* for the buffer
AWAIT(EMPTT,T); /* Wait for buffer ready 4/

I* Write into the buffer 47

ADVANCE(FULL); /* Signal Printer that 4/
/* there is work to do

END; / DO */

44

Each of the producer processes first performs a

TICKET operation on the sequencer Turn to obtain a "ticket"

for the buffer. Each time TICKET is called, the variable T

of the calling producer process will receive a unique value.

This value is then used by the producer process as an

argument for the call to AWAIT. It is the event (value of

the eventcount EMPTY) for which the process will wait. When

that event does occur (the value of Fmpty, which is advanced

by Printer, reaches the value specified in the call to

AWAIT) the process will be unblocked and may then proceed to

use the buffer. When it has finished, the process will

perform an A'VANCE operation on the eventcount Full to

signal Printer that there is information in the irput

buffer. Since each producer process uses the same sequencer,

only one of them at a time will access the buffer.

'he consumer process Printer is propram ed as

follows.

PRINTFER / Consumer proeram */

DO I = 1 TO 65536; /': Essentially forever
AWAIT(FULL,I): /* Wait for a messape to be */

/* deposited in the luffer */

•* Perform output function */

ADVANCE(EMPTY); /* Notify waiting processes */
/* that the buffer is nou */
/* available

END; /* DO ,/

The Printer process synchronizes on the eventcount

Full (it waits lintil Full is advanced by some producer

process that has finished using the buffer). After Prirter

l45

finishes with the buffer, it performs an ADVANCE operation

on the eventcount Empty. This notifies the producer process

that is "next in line" that the buffer is now available for

its use.

G. TFE INNER TRAFFIC CONTROLLER

1. General Description

The Inner Traffic Controller is the physical

resource manager. It is responsible for physical processor

multiplexing,. Its principal data base is a table known as

the Virtual Processor Map.

Fach physical processor has its own fixed set of

virtual processors used in multiplexing. The Inner Traffic

Controller is primarily concerned only with this set of

virtual processors. Fowever, the performance of system-wide

synchronization requires access to the rest of the virtual

processors as well, so that sinals may be sent to other

physical processors. This is accomplished by maintairing tie

Virtual Processor Map as a central data base containing

entries for all of the virtual processors in the system.

Maki n" it ,lobally available facilitates communication

betwppfi virtual processors on a system-wide scale. The

Virtual Processor Map fields are diagrammed in Fi-ure 7.

The State field reflects the present state of the

virtual processor and can be any of ready, running, waiting,

or idle. A ready virtual processor is bound to a process and

946

state Priority System
Eventcount

Identifier

System Stack Preempt
Event Segment Pendinp
Awaited Register Flag

Value

THE VIRTUAL PROCFSSOR MAP

Figure 7

47

is in contention for the physical processor. The running

virtual processor is that virtual processnr which is

actually executinp a process on the physical processor. The

waiting state reflects physical resource management. The

idle state is assumed by a virtual processor which has no

process bound to it. The idle state prevents the assinrrent

of useless (idle) work to a physical processor.

The Priority field of the virttal processor is used

in scheduling. The highest priority runneble virtual

processor is selected to run. This priority is determined by

the priority of the process bound to the virtual processor.

The System Eventcount Identifier and System Event

Awaited fields are used in systerr level syrchronization.

The Stack Segment Register Value field defines the

address space of the bound process. It holds the process

address space descriptor. The execution state of the process

is stored In the stack when the process is not actually

running. This is the value which is rpquired to access the

address space of the process, viz., it is chaneed to swap

processes.

The Preempt Pending Flap is used for preemptive

scheduling. It serves to virtualize a hardware interrupt

sent to the physical processor.

2. Virtual Processor Scheduler (VpScheduler)

This module is responsible for makine the schedulinp

decisions for virtual processors. it selects the hiphest

t c

priority virtual processor from amronp !he physical

processor"s assipned set of virtual processors and schedules

it. Note that there are two distirct entry pcirts to

Vp_Scheduler.

The normal call entry point is used by other Inner

Traffic Controller modules to activate VpScheduler when a

virtual processor pives up the physical processor on its

own. The preempt interrupt entry point is used in response

to a hardware preempt interrupt from another physical

processor.

For a normal call, Vp_S-hedule r sets the

VpScheduler return type flag to indicate that a normal

call-return sequence is to be followed for the executine

process. The Vp_Scheduler return type flap is used to keep

track of the mode of entry into VrScheduler for the

process.

Vpscheduler next searches through the fixed set of

virtual processors for the hihest priority ready virtual

processor. In this design, the definition of ready ircludes

the combination of an idle state and a pending virtual

preempt interrupt. This allows an idle virtual processor tc

run so that it may field the interrupt and bind to a new

process. The idle process that was bound to the virtual

processor was essentially useless up until this point. It

now provides an address space for the virtual processor to

execute in when binding to a new process.

f4'4

.avini selected some eligible virtual prccess'or,

7DScheduler proceeds to bind the selectad virtuil processor

to the physical rrocessor. It beein ty inbnd"ng tne

currently runnine virtual processor. In ioinR so, the

Vp_Scheduler returr typp flig, the Stack Poirter Fe-ister

value, and the lase Pointer Feeister value are saved in

known locations on the process ' stack. The ; rocess"

executior state had alreadj been saved.

11indInL- the selected virtual processor is teuri by

chanping the Stack Segrent (SS) Reister value to that cf

the selected virtual processor. Once this chazee has ten

made, execution has actually swapoed to the rew process

address space. Eindine is completed ty retrievirn the

previously saved VpScheduler return type '!a.- for the net

process, the Stack Pointer Register value, ard thp 'Ease

?ointer Feeister value from the newli acquired stack.

The last step is to actually check the VpScheduler

return tve flag to determine the proper type of return to

execute from VDScheduler for this process. if i ncrmal

call-return i indicated, a norr al return will le eyecute

back throup the calline rodule. Otherwise, if a preempt

interrupt rpturn is indicated, an interrupt return will be

executed and CheckPreempt will see if a virtual rreerpt

interrupt is pending. If a preempt interrupt is found to be

pending, the Traffic Controller's nreempt handler will be

invoked.

4

a. !nt ernil I 'odvl e

T ere is ore irterr-l odule for the 7irtual

Processor Scheduler (VpScheduLer). It is used for the

Penerition o hardware preerp: interrupts.

(1) iidwr _int

This module is called by the IL>er Traffic

crtroller's irterface modules Itckvarce and Send _reerrpt.

It is called with one argument, a physical processor

identifier. It then gnerates the required hardware

interrupt.

2 . Inner Traffic Controller Interface 1o10ules

6. loadve

This mcdulo verf orms the binding of a new

process to a virtual processor. It is called ty the Traffic

C ntroller Scheduler when a process has been selected for

th= virtual processor. IoadVp requires two parareters, the

priority nf the new pricess and the address space descriptor

(th- Starck Sgrent pgl ster value). It then swaps in the new

procest onto the virtual processor which is currently

runninp,. Lca dV, only operates on the virtual processor

which Is running on the physical processor.

Bindin- is accomplished by updating the Virtual

Processor Ylap. The Inner Traffic Controller utility function

Itc-,etVp i; used to obtain the identity of the runninp

virtual processor. When complete, the virtual processor will

hav a a new Dricrity and process addrese space descriptor.

-*

Load Vp completes by calling VpScheduler to schedule the

virtual processor.

b. Idle_Vp

This function is loadVp's counterpart. It is

called b y the Traffic Controller Scheduler in the event that

a runnable process is not found for the virtual Drcoessor.

In thls case the virtual processor will be idled (enter the

idle state) and the Idle Process will be bound to it. In the

Virtual Processor Map, the virtual processor's state will be

marked as idle, the cddress space descriptor for the Idle

Process will be entered in the Address Space of Bound

Process field, and the virtual processor will be piven a

high priority. The idle state ensures that the idle process

is not actually run (the virtual processor now has a high

priority) by takine the virtual processor entirely out of

contention for the physical processor.

At some later point, the virtual processor may

be placed back in contention for resources. This will occur

when the virtual processor is preempted. With the

combination of an idle state and a pendinR preerrpt. the

virtual processor is treated as a high priority ready

virtual processor. This allows the virtual ;rocessor to 'keep

busy by axpediting its binding tc a process.

lastly IdleVp calls VpScheduler in order to

give up the physical processor.

-

C. Itc_Pet_Vp

This is a "utility" function which is used by

Inner Traffic Controller and Traffic Controller modules.

ItcPetVp searches the Virtual Processor Map and deterrines

the identity of the virtual processor that is currently

running on the physical processor. It simply checks for the

virtual processor arrone the virtual processors assiRned to

the physical processor which is in the running state.

ItcRetVp then returns its result as a function value,

(viz., as in PL/N) ir the AX (accumulatcr) register. It will

return either the identity of the virtual processor (the

virtual processor's index in tie Virtual Processor Map) or a

not found error code.

d. Chn-ck_P reempt

This module is called by Vp_Scheduler during the

execution of an interrupt return. It checks for a pending

preempt interrupt meant for the virtual processor, which has

been selected to run by Vp_Scheduler, by checking the

virtual processor's Preempt Pending Flag in the Virtual

Processor Map. If the Preempt Pending Flag Is set,

CheckPreempt will reset it and call the Traffic Controller

module Tc Pe Fandler.

The module continuously loops as lone as it

finds the Preempt Pendin" Flag set. This is to ensure that a

new preept interrupt which might arrive before servicing of

the last preempt is not lost.

5

53,

e. SendPreempt

This module is responsible for actually sendiLF

preempt interrupts. It is called by the Traffic Controller

Advance module. SendPreempt requires two arguments, the

identity of the virtual processor which is to be preempted

and the physical processor to which that virtual processor

is assiened.

SendPreempt sets the virtual processor"s

Preempt Pendinp Flap and calls Fdwr_ Int to generate a

hardware interrupt for the physical processor. ndwr _Int is

not called if the virtual processor to be preempted is

assigned to the physical processor which is executitip

SendPreempt, (viz.. a physical processor will rot issi'e a

hardware preempt interrupt to itself).

f. Itc Await

Itc Await is one of two functions which

implements inter-virtual processor synchronization within

the kernel. It is not accessible to user processes, tut is

used by the system in the mana.erpnt of physical rescurres.

It allows a virtual processor to wait for the occurrence of

a system event.

It expects two input aruments, the irdex of the

eventcount in the System Bventcount Table an! the value of

the event to be awaited.

Upon being invoked, ItcAwait locks the Virtual

Processor rap. It then checks the current value of the

54

*

eventcount, obtained from the System Eventcount Table,

apainst the value Piven in the call. If the present value of

the eventcount is found to be less than the value of the

input argument, thEn the virtual processor will enter the

waiting state and give up the physical processor.

The virtual processor's entry into the waiting

state will be reflected in the Virtual Processor Map. The

input arguments will be entered in the Identity of

Eventcount Awaited and the Value of Eventcount Awaited

fields. Finally, the virtual processor will relinquish the

physical processor by calling VpScheduler. Upon a return

from VpScheduler, the Virtual Processor Map will be

unlocked.

g. Itc Advance

ItcAdvance is used within the kernel to signal

the occurrence of system events. It is used with Itc Await

for synchronization between virtual processors. It accepts

one input argument. This is the index in the System

Eventcount Table of the eventcount to be advanced.

TTpon beine invoked, the Virtual Processor Vap is

locked. The System Eventcount Table is then accessed and the

indicated eventcount's value is incremented by one. The

resultant value is then compared against the events waited

for by other virtual processors which are synchronizing on

the same eventcount. Those virtual processors whose Value of

55

E*

Event Awaited fields are less than or equal to the current

value of the eventcount are made ready.

Itc Advance then calls VpScheluler to schedule

the virtual processor. The Virtual Processor Vap will te

unlocked upon a return from VpScheduler.

H. THE TAFFIC CONTROLLER

1. General Description

The Traffic Controller manages the execution of user

processes. It presents to the user a system of one more

virtual processors on which to execute his processes.

The Traffic Controller's primary data base is the

Active Process Table, shown in Figure 8. The entry for each

process in the Active Process Table contains sufficient

information about the process to enable a virtual processor

to be bound to and execute it. The fields of the Active

Process Table are explained telow.

The State of a process can be either realy, running

or blocked. A ready process is one which is not yet bound to

a virtual processor but is ready to do so. A rurring prccess

is one which is bound to a virtual processor and. as far as

the process is concerned, executine. The tlockpd state

reflects inter-process synchronization. A process enters the

blocked state when it realizes that it can no loneer j.roceed

and wishes to give up its virtual prccessor to wait until

another process awakens it.

56

-4 _ I II I n • m m ~ nl..... =• . -.. , , - . : = . t

State Identity Priority loaded
of Pound List
Virtual Thread
Processor

Value Block Address
of List Space
-oventcourit Thread rescriptor
Awaited

THE ACTIVE PROCESS TABLE

Fipure E

57

The Affinity field specifies the physical processor

that the process must execute on. In this system', this field

indicates the specific microcomputer on which the process is

currentlv loaded.

The Identity Of Bounl Virtual Processor serves to

identify the virtual processor, if any, that the process is

currently bound to.

The Priority specifies the priority of the trocess.

In this system, priorities range in value from 0 to 255,

with a priority of 0 being the hi-hest.

The loaded List Thread field serves to implement the

Loaded List of ready and running processes. It contains a

pointer to the next process in the Active Process Table

which is loaded on the same microcomputer as this process.

The loaded list is ordered by the priorities of the

processes. Thus this field contains either a pointer to a

process whose priority is less than or equal to that of this

process or a nil pointer (viz., the last process on the

Loaded list).

The Value Of Eventcount Awaited reflects the event

for which the process has blocked itself. It contains the

value that the process is waiting for the eventcornt to

reach.

The Block List Thread is used to implerent the

Blocked list. This is a per eventcount list of prccesses

which are waiting on the eventcount.

56

4I

The Address Space Descriptor field contairs tze

process' address space descriptor. This is the identity of

the process' stack which contains execution point

information. The value used here is the base location in

memory of the stack sepment, viz., the Stack Segment (SS)

Register value.

2. Process Scheduler (Scheduler)

Scheduler works in essentially the same way that the

Inner Traffic Controller's Vp_Scheduler does. Fowever,

Scheduler works with processes. Scheduler can be called by

Advance, Await, TcPeFandler, Create_Fvc, CreateSeq, and

Create Process.

It selects the highest priority ready prccess from

the microcomputer's Loaded List to be bound to an available

virtual processor. Scheduler works only with the processes

which are runnable on its own physical prooessor using the

fixed set of virtual processors for that physical prccesscr.

If Scheduler finds a runnable process, the Inner

Traffic Controller module LoadVp is called to lin the

selected process to the running virtual processor.

Alternatively, if a runnable process is not found, the

virtual processor will be idled (bound to the Idle Process

and placed in the idle state) by a call to the Inner Traffic

Controller module Idle Vp.

In its present form, Scheduler has only one entry

point, a call entry point. There is no interrupt entry point

*y

-1I

as there is in VpScheduler. This was done as ar expedient

in this desion effort. It is desireatle to provide the

second entry point so that the two schedulers have parallel

structures. Because there is no interrupt entry point, there

is a loop between the Inner Traffic Controller ard the

Traffic Controller for the handling of preempt interrupts.

This is due to the call from the Inner Traffic Controller's

preempt handler CheckPre_E rpt to the Traffic Controller's

preempt handler TcPeFandler.

a. Internal Modules

There are two "utility" modules internal to the

Scheduler that are used only by Traffic Controller modules.

They are used to simplify the handling of eventcoints and

sequencers.

(1) locateEvc. This "utility" returns the index

of an eventcount in the Fventcount Table. It is called by

Advance, Await and Ticket with (a pointer to) the name of

the eventcount. locateEvc then attempts to match the name

given to it with one in the Tventcount Table. If a rratc. is

found, it returns the index to the caller in the AXA

(Accumulator) Repister as a function value (viz., as in

PI IM).

(2) LocateSeq. This is the second Traffic

Controller "utility" function. It works in exactly the same

way that Locate Evc does except that it searches for

sequencers in the Sequencer Table rather than evontccurts.

6

3. Traffic Controller Interface Modules

a. Await

Await allows a process to suspend its execution

pending the occurrence of a specified event. A'NAIT is called

with two areuments, (a pointer to) the name of the

eventcount and the value (of the event) to be awaited.

Upon invokatlon, Await locks the Active Process

Table and then calls the Inner Traffic Controller utility

function ItcRetVp to obtcin the identity of the running

virtual processor. This is used in a search of the Active

Process Table to identify the calling process.

Once the calling process has teen identified,
I

the current value of the eventcount is ccmeared to the

awaited value specified in the call. If the event has not

yet occurred, (viz., the current value is less than the

value to be awaited), then the process will enter the

blocked state. The Value of Fventcount Awaited field in the

Active Process Table is updated with the value awaited

arpument and the process is placed on the Eventcount's

Blocked List. If the event has already occurrod, (viz., the

current value is greater than or equal to the value awaited

areurrent), then the process is not blocked but is made

ready.

Await next calls Scheduler. The Active Process

Table is unlocked upon the return from Scheduler.

61

.ib

b. Advance

Advance allows a process to sio-nal the occurrence

of an event. It updates the eventcount and signals those

processes which had blocked themselves for this event. Thus

Advarce is responsible for preemption.

Advance is called with one argument, (a pointer

to) the name of the eventcount being advanced.

It first locks the Active Process Tatle. Then the

current value of the eventcount is Incremented. The

eventcount's Blocked List is searchei for processes which

had previously blocked themselves for this value. As

processes are found that should be awakened, th-y are made

ready. An entry in a temporary array of physical processors

is now made to flaR the physical processor, in whose local

memory the newly awakened process is loaded, for preemption.

The awakened process is then removed from the eventcount's

Blocked List.

Once all of the processes to be awakened have

been found, Advance determines which virtual processors must

be preempted. This is done for each of the previously

flagged physical processors by first assuming that all cf

the physical processor's virtual processors should be

preempted. Then the decision is made as to which ones will

not be preempted. This method greatly simplifies the

aleorithm. First a temporary list (array) of virtual

processors is initialized to indicate a virtual preempt for

62

each of the virtual processors. The Loaded List is then

searched to find those processes which should be running.

The processes which should be runnin are those with the

highest priorities that are in either the ready or the

running states. Assuming there are 2 virtual processors per

physical processor used for multiplexing, the 2 highest

priority ready or running processes in the loaded list

should be runninR. Any lower priority processes that

actually are running should be preempted. Advance determines

which of the processes that should be running already are

running and deletes their virtual processors from the

preemption list (resets the preempt flaz in the array). What

will remain at the end are those virtual processors that are

to be preempted.

The next step is to actually issue the preempt

interrupts. The temporary preempt list is checked and if a

preempt is indicated for a virtual processor, the Inner

Traffic Controller nodule Send-Preempt is called to actually

issue the preempt.

Advance next readies the calling process and

calls Scheduler. Upon the return from the call to Scheduler

the Active Process Table is unlocked.

c. Ticket

Ticket returns a unique sequencer value with

every invokation. The value returned will always le one more

than the last value returned.

, -634

It is called with one areument, 'a pointer to)

the sequencer name. When invoked, Ticket asserts the global

lock on the Active Process Table, effectively lockine the

Sequencer Table. Ticket then calls LocateSeq with the

pointer to the sequencer name given to it as an irput

argument and gets back the index of the sequencer in the

Sequencer Tabtle. It then obtains the sequencer's value which

is to be returned to the calling module in the AX

(Accumulator) Register following standard PI/M -onventions.

Before returning, ticket increments the value of the

sequencer and unlocks the Active Process Table.

Note that Ticket does nct call Scheduler like the

other synchronization primitives Advance and Await. Tic'et

returns immediately from a call.

d. Read

Read returns the current value of an eventccunt.

It is called with one arpument, (a pointer to) the nare of

the evertcount.

When called, Read locks the Active Process Tatle,

so as to lock the Eventcount Table. It then calls Locate Evc

to obtain the index of the eventcount in the 7ventcount

Table. With this index, Read obtains the value of the

eventcount and returns the value in the AX (Accirulator)

Reister following normal PI/M, conventions. Prior to

returning, Read unlocks the Active Prccess Table.

4 64

e. TcPeFandler

This rrodule serves as the virtual jreerpt

interrupt entry point into Scheduler. It is called ly the

Inner Tr3f f ic rontroller'3 Vp_Scheduler in the course of

handline preempt interrupts.

TcFeFandler calis Scheduler to find the highest

priority ready process to bind to the pre-erpted virtual

processor.

f. CreateEvc

This module creates an eventcount for a user

process. CreateEvc is called with one argument, (a pointer

to) the nare of the eventcount to be created.

Upon beirg invoked, Create _ vc locks the Active

Process Table, which effectively locks the Eventcount Talle.

It then calls locateEvc to deterrrine whether or -ot the

eventcount had already been credted. This is to avoid raking

duplicate entries (since each process which will use the

eventcount rust declare at least the na re). If the

eventcount had not previously been created (viz., nl entry

is found in the Eventcount Table with the sae nan'e as P, venr

in the input argument) then an entry is r ade in t-t

Eventcount Table. The namre is coried into the Zvei.tcount

Table ane thp eventcount's current value is initialize! to

£. Otherwise, Lo entry is made. lastly, it unlocks the

Active Process Table prior to returning.

65

-*

g. CreateSeq

This module creates a sequencer fcr a user

process. CreateSeq performs in exactly the same way as

CreateEvc (paragraph f) except that it creates sequencers

rather than eventcounts.

h. Create Process

CreateProcess provides the capability to

dynamically create processes. It is called with oe

arpument, a pointer to a process parameter 1lock contalnin.g

all the information necessary to initialize the prccess's

stack and enter the newly created process into the Active

Process Table. All of the process's sepments had previously

been loaded into memory ty the system loader, Foss [161.

Create Process first locks the Active Process

Table. It then create~s te.--ni.ializaton stack frarre. The

process parameter block contains all of the lI-& -re;-1ster

values (viz., initial values for all of the EVE6 's

registers) for the process. These are stored in the

initialization stack frame; the location of the stack is

specified in the Process Parameter Block. The next step is

to create the Active Process Table entry for the rocess.

The affinity, priority and Stack Segment (SS) Register value

are then entered in the Active Process Table. lastly,

Create-Process determines where this process should be

inserted into the Load list based on its priority.

CreateProcess inserts the process into the Load list (viz.,

66

sets the Load Thread in the kctive Process Tatle)

immediately ahead of the first process it finds in searchinE

down the toad list whose priority is less than or equal to

the newly created process. Finally, the kctive Process Table

is unlocked and execution returns to the caller. N'ote that

the Scheduler is nct called.

I. THE SUPERVISOR

In a general-purpose operating system the Supervisor

provides common services such as library routines, linkers,

various development tools and a file sytem. it also acts as

the interface between user programs and the kernel.

1. General rescription

At this state of the design, only one module resides

at this level, a higher order lanzuage interface to the

operating system kernel. This module (called the rate is

constructed such that it is the only operating sistem module

that the user must link to his processes to access kernel

functions.

The Gate contains the actual linkages (viz., Ploal

procedure declarations) for all of the kernel fv-nctions.

This allows the user to directly call on various kernel

services without usino atsolute addresses that car change as

the kernel continues to be developed. This structure allows

the users and the operating system developers to cortinue

their work independently without requiring the users to

37

continually chane their programs to accomrrodite chaLes in

the kernel.

2. Supervisor Invocation (The Gate,

The Gate is actually a set of plobal (vi7., PL/Y

PUBLIC) procedure declarations which the user progras can

call directly. Each of the user accessible kernel functions

is represented by one of these "procedures". In reality,

they simply set up the required parameters ard use a trap

feature to effect the call to the "real'" procedure of the

same name residing in the kernel.

The Gate is written in assembly lanpua.-e because of

the stack manipulation that must be done to enable the trap

handler to 1) determine the correct kernel procedure to

call, and 2) properly pass parameters to the kernel

procedures. The trap handler in the kernel Is an assembly

lanpuaze module as well. If the trap handler were writtEn in

PL/m, parameters would have to he somehow given to it

explicitly prior to its callinF on the kernel pro cedure.

Since the trap handler is reached by an interrupt rather

than a call, this is not possible. Instead, the parameters

are moved on the stack to a position where they be-ore

parameters for the call by the trap handler to the kernel

procedure.

This has the effect of de-coupliqt the user -r-m a'l

of the operatinp system modules below the level of the

Supervi sor.

68

V. CONCLUSIONS

A. SUMMARY OF RESUITS

The principal poal of this effort is the development of

a multiple processor system. A parallel development effort

in secure systems, Reitz [18], utilized the O'Conrell and

Richardson design as the basis for the kernel of a secure

computer system utilizing the Zilop Z8Fe microprocessor.

The detailed designs of the kernels of both of these systems

is nearly identical, at least at the level of kernel module

interfaces. In both developrent efforts, no conceptual

problems were Pncountered. Thus the O'Connell and Richardson

design has been found to be consistent for multiple

processors and secure computer systems.

System initialization [16], introduced a number of

design changes. However, these had no adverse effect on the

design or the system. Their integration is not a simple

matter as they impact on the stack format, and the desien of

the process scheduler and virtual processor scheduler in

that the accommodation of preempt interrupts is somewhat

more difficult.

Another of the objectives is to test the viability of

utilizing Peneral-Durpose, commercial microcomputer systems

as the basic buildine blocks of multiple computer systems.

It has been found that sufficiently developed microcomputer

systems are availatle in industry. Further, it was

69

*

determined that enough hardware support (busses, I/0

devices, peripherals) is available to construct multiple

computer systems witlout major hardware development efforts.

The state of the art in microcomputer software

development was found to be less amenable. Such useful tools

as high level languages, assemblers, etc. are available but

they are generally limited to use with uniprocessor

developmental systems. Additionally, most ccmrmercially

available software development tools are highly machine

dependent. Specifically, they require low-level monitors or

special hardware that are only available on a development

system. Thus there is little hope of easily modifying these

tools to run on a different syster tha- was intended by the

vendor, particularly since details of their structure and

operation are proprietary.

A. FTTRTFER RFSFARCF

Further development work is still required. This

includes the final construction of the Gate and the

inclusion cf two non-distributed kernel processes for I/O

and memory management. These kernel processes provide for

the virtualizatien of memory and I/O resources with which to

achieve the goal of configuration independence.

The present design utilizes the test-and-set serraphore

operation to implement global locks on kernel data bases

(viz., the Active Process Table and the Virtual Processor

Map). This mechanism (supported by the P1/'1 built-in

F"

procedure ") i d spin-lo: wit '

sinificant impact on system bus traffic. This me-'hanism

should be replaced by the Inner Traffic CcntrollEr

synchronization primitives wherever possible to avoid the

overhead of "busy-waiting".

This detailed desizn is considered to be only a first

step in the developmert of a general-purpose rultiple

microcomputer system. O'Connell and Richardson's design

offers some excitinp opportunities to pursue development

efforts in the areas of secure computer systens and fault

tolerance.

71

AFFPEN DIX A - PROGRAMMING

A. INTCrMUCTION

This appendix is desipued to be a practicil introduction

to programming methodology for this system.

lecause there are multiple processors. a nurber of

concepts and methodologies will necessarily 're introduced

which may at first be uncomfortable. This is especially true

if one is firmly entrenched in the traditional concepts of

the monolithic, sequential program str:cture. Fcwever, as

one makes the transition to the concepts of process

structuring, it will be seen to be a natural approach to the

development of complex software systems. Additionally, it is

essential to the effective use of multiple 1roce-sor

systems.

Parallelism irmediately presents the proe'ramrrer with an

entirely new set of complexities. Fe is not lirited tc tne

strictly sequential execution of propram statements in a

single program. Exercising control over the order and timinp

of execution of multiple proceses becomes a major part of

the proramrin- effort. Inter-process synchronization. the

mechanism by which processes are controlled, is the riost

difficult concept which the user will te required to deal

4?-

with. However, the synchronization primitives tuilt into the

operating system are designed tc make this as sirple and

straihtforward as possible.

It is assumed that the primary propram!inp- laneuape for

this system will be I:teI's PF/M-S C5, I]. This is a

powerful, block structured high level laneuase desipned for

systems programming. This appendix is written assuming that

the reader will proram in PL/-86 and is familiar with its

terminology and notation. All of the examples make use of an

informal PI/M notation.

3. THE PROCESS STRUCTURE

Consider the rather typical PLI/M program module of

Figure 9. It contains three procedure declarations and some

mainline statements. Each of the procedures will execute

when called from the mainline and, upon completion, will

return control back to the mainline.

A sinele proram Is what most users are familiar with

and is a structure which can be dealt wit, easily. However,

as the computinrp task Rrows to any real size and complexity,

this single program prows equally large ard complex. The

result is a hu'e program with a myriad of procedures that

can only be called sequentially to perform ne:essary

functions. Thus this structure does not allow taking

advantae of the performance -ain that parallel processing:

can offer.

-4

Prop-ran Module A: ro;

Al: PROCF~R Z Declaraticn ~

END; /* Procedure kl 1

A2: PROCEbrtJRE; / Declaration *
no;

END; /9: Procedure A2 /

A"': PF.OCE-1EF; /* teclaration'*

T~D;

7Nr; /* Procedure A *

DO; /* Begin. Mainline *

CALL Al;
CALI A2;
CALL A3;

FNL; /* Mainline .

ENr; /~Program %oeule A ~

ETAMPIE P1 /M-e6 7-ROGRAM

Fizure 9

k 74

'Frocess ine

Process Process CEccess

Al A2

l~oop ta&ck
to s t r t

TFLR7-E PROCESSES TTECT'TI"G SE1ENTIAUlY

Fi,?ure le

DECIA)? NAMEl(6) BYTE D)ATA ('NA MEl% o';

Byte array of Strirng constant
length C to hold name def ined by
the name the user

DEC LAPAT'I ON OF EVENTCOJNT AND SECUENCER NAiES

Figure 11

75

The principal advantates of the process structi're lie in

the ability to utilize multiple processes ar~d tc

independently construct irdividual components of softwarE

subsystems, viz., processes. R1a ther thail us ine a s i r.s Ie

process to accomplish the entire job as in 71igure P, the

overall task car. be partitioned and accomplished ly a number

of smaller cooperatinm processes. Each of these processes

can be smaller than the single monolithic program, ar1 so is

easier to desip-n, implement and test. T his-- al Iows entire

processes (each a distinct prop-ramr. tc be developed and

tested semi-independently in a manner sir"'tlar to tn'e

developrent and testing of individual procedures in a sine'le

FIlM program.

Control over processing functions is also much more

flexlible. One is not forced into a strictly sequential

series of procedure calls. Many processes can b e allowed to

execute in parallel, which can brin? about dramratic -ains 411;

overall performance.

Figure 10 is a simple example of the flow of eyecution

in a systemn with three processes. The three processes

perform exactly the samre functiors as the three procedures

of Figure 9 ard so bear the sarie rarres. In this exar'ple the

processes execute sequentially, one after thE other In a set

crder. Processing goes on forever in this loop". Frccess A2

will only7 bepin executine- after it has 'LEE, somrehow

slRnalled" by process Al. The same is trtue of process A3

7t5

whose execution is synchronized with process A2. Obviously,

there r- ust be sorre control mechanism that allows these

processes to do this.

C. INTF?-PROCTSS SYNCFRONIZATION YECFANISYS

The ability to synchronize the execution of processes

throughout the system, (irrespective of which microcornJuter

they are loaded on), is the cornerstone of the power aLd

flexibility of this system. To accomplish this, process

svnchronization is based on the notion of events.

1. ~Events

An event is anything that one considers slinificant

and can direct, in some fashion, the computer to respond to.

As an eample, consider a clock which indicates a time of

twelve o'clock. The computer has no inherent conception of

time. As far as it is concerned, time may be ncthing more

than a value in some register. In some way, then. time TUst

be defined for the computer. This is ac-crplished y 1y

translatine the occurrence of twelve o'clock into an event.

Ihen the event occurs, the computer recognizes that it is to

respond in some specified manner.

Events are defined so as to be very Peneral in

nature. They can be used to represent the completion of a

proiram, as in the completion of process Al in Figure 12

which started tne execution of process A2. Thpy can

represent virtually anything of Interest to the programmer,

", 77

at least anything that he car. idertify as bpin7 of

si:-nificance.

2. Eventcounts and Sequencers

Eventcounts ani sequencers allow processes to

synchronize with each other somewhat indirectly. Tc

synchronize directly, a process would have to soehow

identify the other processes with which it is syrchrcnizing

(viz., erplicitly signal a process by name). This would'

require the narin of individual processes or sore sirilar

identification scheme.

Rather than using a process namin scheme, the

individual processes "agree", in a sense, to cooperate by

usinp a common set of memory objects called evertccunts and

sequencers. In this way, even thougzh the processes must know

the names of the eventcount5 and sequencers that they use,

they are not required to know anything at all about each

other's identities. In fact, a process need not even kno,

htow many other processes will tbe synchronlzirg with it.

This offers some advantoges in parallel processing.

Processes that synchronize with eventcourts do not have to

know how many other processes will also use the came

eventcounts. This means that fewer codine rhanpes -.ill be

required when, for example, a sin-le process is partitioned

Into several processes all executinp, in parallel. All of tLe

new processes will synonronize cr the sare Fventcount sc

:hat no chant-es are required in tne process that or4gi r. ly

synchronize.d with the slrn'le process.

-vertcounts are used to keep track of t:he occurrence

of specific events. They are manac'ed for the user by the

system. Eventcounts are imlementeI as FI ,'V-CC wCrd

variables raneincg in value from 0 to 6=517. Sequencers are

also implemented as FL/'I-F,3 word variables ranpine in value

frc!- 0 to 65536. Hcwever, sequencers can bp used tc ijcse

an order on the occurrence of events. :he-; are thus used

with eventcounts to provide for rutual exclusLcn.

3. Pventcount and Sequencer reclarations

a. :=claring Eventcourt and Sequencer Nares

Fventcounts anc sequenzers are narzec using- a

byte array cf alpnanureri c characters. Th formrat fcr

declarin- an eventcount or se)uencer na.e is :-ve. In Figure

!I. Note that the names are constants. not va-iables. ?.'e

declared, a nare r st not c'han,:. 7ve.ttccu::t an . sequencer

nares consist of 5 characters followed oy a -er tn;-,t S;7

(4) . Note in Fi-ure 11 tn.it the nr.e o' t-e b'te aray ,ust

te the same a th e .tri constant ,ven in the 'A

Inltialization. This allows the user to re freuc- the

eventcount or sequencer ly narie and allowc ;he nperatire;

system to identify it.

Rer-ember that tre names of eve tr co j rtn at,,i

sequ,-ncers must be declared In exa. ti.,, the sa-e a:,- n e ac :

rL/v- rmodule in which they wll be us d.

77

'. assine: 7ventcount and Sequencer Na-es

Wh-e n callin- t- e operatins S'.. 5t~

synchronization primitives, eventccunt arnd sequencer namres

are always pissed as P1/>1-66 lccation referenne-, usin:? thre

.C" operator. As an example, consider tha t -vt F a rray

called "NAY 71" ho lds the s t ri np- NA1"'no te tha t the

symbol is on ly a del imi te r a nd i.s no t c ors iIered t~ c e,,

o f the name). To uass the name irn a --a! tc an opE ra tt.

system synch roniza tion pri-iLt ive, then, th-e za ra7 e t ;r

iCAl is used. With the pointer Fo g7iven, the OlFEraEtIn<

syste' can "read" tile namre direct ly frotr the a rray .

C. Creatino 7ventcounts and Sequencers

Tefore a-- eventcount or a Soqutncer is -Sed, the

operating syistem must be infcrmed of its existenc!e. This is

accom-plished by a call to the OIpErating,. syster~ proce',.ures

C ?FATB-- EVC (tor eventcourts) and fA'~C~ cr

sequencers). The f orma t of th e se o p a t ion s i s ,hown in.

Fig-ures 12 and 1--. Tere is only on- dr.,,-ent f or ei t I- r 0of

the calls, the pointer to the revioiuslyv delrEd rame. h.

c rea ted , a n eventncount or a s -quen -er w .1il a's le

lnitiallzeli with a startine, valufe of Of.

4. Synchronization

Fventccunts and sequencors are utili~ed y me-ars of

a set of operations uhich may be performed on tht&' The 1.sEr

cAnnot ireCtly perform operations on either eventcrunts 0o.

C A I C7ATWTC((N A 77

9 rne I 'Poi nter to
u n ctcn the he-31 of the

n aim cn re-de.clared
byte array holdin,7
the striz, nam'e

CREATINC; AN EVENTC3TJNT

lig-ure

CAL:

Ke rnelI ?)ilrter to
function the healI of the
r.am e nre-dlecia red

byte array h-o14i.,
the stri:.., rlirme

CR:-ATINCG A S 7-Z." UZ 7 R

F i eur e 17-

sequencers, but rather calls on certain operatinF system

primitives to do these for him.

a. Operations on Eventcounts

There are three 3perations that one can Lerform

on eventcounts. They are ALVANIC_, AWAIT and READ. A.;VANC_

and AWAIT are untyped procedures. PEAD is a value returnin

typed procedure (function call) that returns a !L/M-E word

value to the calling process.

An example of a READ operation is -iven in

Figure 14. The READ operation allows tne user tc obtain the

current value of a specified eventcount. F.EA returns the

eventcount's value in the AX Re&ister (in accordance with

normal PL/M-E6 conventions). Thus a process calls F-A: with

the name of the eventcount as the argument and Rets back the

eventcount's current value. Note in Figure 14 that the

current value of eventcount -V-NT is returned to the

user-defired word variable WDRVAiABIE".

7he AWAIT operation. Fi2- re 15. is use_ - a

process to block itself (suspend its executicn) until the

eventcount reaches the value specified in the call. AWAIT

requires two arguments, the eventrount name and the event

(actually the value of the eventcount) to wait for. The

value for which the process will wait must be a ?l/V- word

value. This allows the process to synchronize itself with

WCRL V AR IA ELF 7 A_ -V -,'

THE READ OPTRATION

Figure 14

CALI AWAIT(@VENT,VAIUETO AWAIT);

TF": AWAIT OP7RAION

Fipure 15

CALL AI)VANCE(GF7ENT);

TH71 ADVANCE OPERATION

Figure 16

WORD':VARIABLE =TICFFT(GNA~l1Ei);

THE TICKET OPEPATION

Fipurp 17

ctnor processes by waltin , for instance, utitl a set of

data is ready for it to use.

The ALVANCE oneration, Figure 13, is use- to

signal the occurrence of an event. ADVANCE only requires one

argument, the name of the eventcount to be advanced. 'Then it

is called, it will cause the value of the eventcount to be

incremented by one. The operatinp system will then iro-eed

to unblock those processes that were waitinF7 for the

eventcount to reach the current value (by virtue of havlnr

previously called A4A1T).

b. Operations on Sequencers

There is only one cppratior that ca" be

performed on sequencers. it i5 called TICKFT, Fif-ure 17.

TICKET is a value returnin type" procedure (fi:ncticn call1

similar to the READ operation for eventcolunts. ';owpver,

TICKET returns to the caller a unique sequencer value. The

current value of the sequencer is returred to the caller and

then the sequencer is incremented b- one for the next caller

time a TICKET operation is performed on it. This will be

true irrespective of how many different procpsses parfcrr

the TIC7'T. operations. In this way TICKET prov:ides the

totally ordered set of values for use by multinle processes

in effectinp mutual exclusion.

*

5. Synchrcnization Examples

a. Sequential Processinp Example

Fieure 18 provides a detailed examroe of how a

process would be programmed to actually create and use

eventcounts for synchronization. The pro. ram shcwn here is

actually process Al of Figure 17.

Referring to the flow of control in FiPure 10,

it can be seen that process A2 will begin execution when

sinalled by Al. Similarly process A3 will Iegin when

signalled by A2. Finally, when A3 signals its completion,

the "loop" starts over again with process Al. This is

reflected in the sample propram for process Al, Figure 10.

Here two eventcounts are declared and created, "ENrAl" and

"ENDA3". Eventcount ENDAl is used to synchroni.ze with

process A2. Specifically, ENDAI refers to the evert

corresponding to the completion of Al's processing task. The

occurrence of this event is siRnalled to process A2 through

the Advance operation performed or eventcount ENDAl (located

at the end of the "ro Forever" loop). The result of the

Advance is to start the execution of process A2. After the

call to Advance, process Al will loop back to the call to

Await with an awaited value of I this time and (if process

A3 has not yet advanced EN7A3) will wait there.

Process A2 is proqramrred as shown in Firure 1.

Note that it first calls Await with the eventcount 7NLAI and

an awaited value of I . This Is in cortrast to the awaited

IL

85

. . ..4o = . ..

PROGRAM "ODULE A!: DO;

/* reclare Sventcounts *1
DECLARE ENDAI(6) BYTE DATA ('END Ai%);
DECLARE ENDA3(6) BYTE DATA ('ENDA3%');

/* reclare a local word variable /
DECLARE AIAGAIN WORD;

/* Declare Synchronization Primitives */

CREATE EVC: PROCEDURE(EVENTCOUNT) EXTERNAI;
DECIARE EVENTCOUNT POINTER;

EM ;
AWAIT: PROCEDURE(E7?NTCOUaT, VALUE) EXTERNAL;

rTCLARF EVENTCOUNT POINTER,
VALUE WORD;

END;
ADVANCE: PPOCFDURF(EVNTCOUNT) EXT ERNAL;

DECLARE EVENTCOUNT POINTER;
END;

/* Perin mainline */

A .tGAIN = 0; P. To start execution immediately */
CALL CREATEtEVC(oEN:Afl; /*
CALL CREATE$EVC 7(ENDA3);

DO 4FILE 1; /* Do Forever ./
/* Check to see if processing should tegin '/

CAIL AWYAIT(PENrA3,A1t GAIN);

/* Frocessine completed so notify process A2 ':/
CAIl A"VANCE(@FNDA1);
/* Increment the value to await :/
AItAGAIN = A1tAGAIN + I;

END; /* Of Do Forever */

END; /* Module */

EXAMPLE CODE FOR PROGRAM Al

Figure 16

4 E6

PROG 01V 'AODULE A2: DO;

/* Declare Eventcounts *
DEZClARE TNDA1(6) FYTE flATA ('ENDAl%');
DECLARE ENDA2(6) BYTE DATA ('EN4A2/w');

/* Declare a local word variable *
DECIARE A2 AGAIN WO~ir;

/* Declare Synchronization Primitives *
CREATEtEVC: PRoczDrEj,.(EVENTCOUNT) EXTERNAL.;

DECLARE EVFNTCOUNT POINTER;
FNr;
A'WAIT : PROCEI)TTRE (EVFNTC CUNT, VAI,7E) E-XTFFNAL;

DECLARE EVEN'TCOUNT POINTER,
VALUT ,WORr;

END;
ADVANCE: PROCEDURE(EVFNTCOUNT) ETTERNAL;

rEClARE EVENTCOUNT POINTER;
END;

A2tAGAIN = ; /* To start execution after process ki 41/
CALL CRFATE$P"VC(@ENflAl);/'
CALL cPFATT$PVC(@FNDA2);

DO WFILZL 1; /* ro Forever *
/* Check to see if processinj? should be.-ir, ~
CALLI AWAIT(mEnlA,A2 AGAIN);

1Processing completed so notify process A3 *

CALL AD7ANcE(@FNDA2);
/* Increm'ent Lhe valuse to await *
A2tAGAIN = A2 AGAIN + 1;

E-Nr; 1* Cf Do forever *

END; /* M'odule *

'EXAMPLE CODE FOP, PROGRAY A2

Figure 19

S7

PPOGRAM kODTULE A3: rC;

1Declare Eventcounts ~
DECLARE FNDA2(6) BTY' DATA ('E.NDA2%');
DECLARE ENDA3(6) 3YTE DATA ('ENDA3%');

/1 eclare a local word variable *
DECLARE A3WAGAIN kCrD;

/* Declare Synchronization Primitives ~
CREATE$3PVC: PROCErURE(EVENTCOUNT) EXTER.NAL;

DECLARE EVENTCOUNT POINTER;
,ND;
AUWAIT: PDROCE!DU.RrE(EVENTCOIJ' T,VALUE) -FXTER1NAL;

DECLARE EVENMICIUNT POINTER,
VALUE WORD;

END;
ADVANCE: PROCEDURE(EVENTCOUNT) EXTERNAL.;

DECLARE EVENTCOtTNT POINTER;

/* 1 egin Mainline *

A13AGAIN = 1; /* To start execution after process A2 *
CAII CREATEtEVC(C1ENDA2); 1
CALI CREATZ 37C (@ENDA)W;

DC WFILF 1; /* Do Forever *
P.~ Chect.. to see if processing should begin ,

CALL A',VAIT(@FND-A2.A3tAGAIN);

/* Processing completed so notify process Al *
CALL A.D'VAN CE(PEN DAIr) ;
/* Increment the value to await
A3;tAGAIN = A'-$Ac-AIN + 1

END; O~: f Do Forever *

END); 1* module '

EXAMPLE ConE FOR PROGPAY A-7

Figure 20

a4

valup of 0 used by process X! in its initial call to Await.

Thus process A2 will wait at this point until sifnalled Ly

process Al (if process A2 begins executing before i rocess

Al). After Al performs an Advance on eventcount ZNLA1, A2

will pprform its processing and when complete will sipnal

process A3 to begin via an Advance operation on the

eventcount zNrA3. As with process Al, it will then loop back

to the Await operation and will be suspended until A! once

again signals it to continue.

Figure 20 shows the prozram for process AZ.

Process k3 performs an initial Await as the others di and

when its processini, task has been completed, it signals

process A! to begin the loop again via an Advdnce

operation on eventcount FNrA3.

These three professes are intended to

demonstrate the mechanics of' synchronizine witl eventcounts.

As can be seen, the operations used in all three of the

processes are very sirilar. The real differences lip oniT: ir

the specific eventcounts that each process uses in the calls

to Await ard Advance. Note, however that each process

performs the Await operation at a point that ensures the

process will be synchronized with Its companion processes

even if the process be-ins "out of order". This is required

to avoid confusion since there is no euarantee that the

first of the three processes to berin executing will be the

I'3

one intenled by the prorammer to execute first f'viz., A: in

this examole).

b. Parallel Processinp 7xample

Suppose that instead of tie simple sequ-ntial

execution of processes, as in the above example, one wishes

to execute processes in parallel. The eventcount mechanism

provides the capability to synchronize parallel processes in

(mechanically) the same way that sequential precessinp is

accomplished.

Consider again the three processes Al, A2, -nd

A7 from the previous example. This time the programmer notes

that processes A2 and A3 both depend on input data (a set of

filter coefficients, for example) from process Al. However,

he also notes that neither process A2 nor A7 alters the

input data (they only read it). Thus processes A2 and A3

tecome candidates for parallel execution since they both

hav a common event upon which to bepin execution (the Joint

where the input data becomes available and they do not

depend on each other. Note, however, they mTst reside in

diffprprt microcomputers fcr their execution to actuall.y

occur in parallel.

The desired flow of execution is shcwr in Figure

21. Implementine, the parallel execution of processes A2 and

A3 is actually a simple task. Only process A7 need be

chan,PI. Processes A2 and A3 await the some value of a

common eventcount rather thin differert oues. Thus the

k'

SP 6
Start Processing

Al

loop back
to start

FLNi OF CONTROL IN PARALLEL PROCESSING

FZigure 21

PROGRIAM MODUJLE A3: D0:

/* Declare eventcounts ~
/Eventcount5 FNDA1, FND A2 and FNrk7

/* Declare a local word variable '
DECLARE VAGAAIN WCRD;

DECLARE ENDA1U2) BYTE DATA (VENLAV)
DTCLARr ENDA2(6) BTTE DATA (E2NDA2%'c);
LECLAPF FNDA3(6) BYTE rATA ('ENrA3/'");

/* Dpclare synchronization primitives ~
Advance and Await 4

/* Begin Mainline */

/* Create the event(counts *

A3WAAI74 1;

DO '4FILE 1; /* Do forever 4

CALL A'WAITkE--NDA,A3AG.INV;

/* Perform processing '

/* Processing of both A? an~d A3 complete 4
CALL AJAIT(@FND,'A2,A3tAZ^AIN);
CALL A:VANC^F(@7ENDA3);

/'* Ircrement the vdlue to await ~
A3$AGAIN = A3-,AGAIN + 1

END; /'* Of Do Forever *

ENr; /* Of" module *

PARALLEL PROCESS'N&^ EKAYPL-1 PROCESS A-7

Figure 22

*9

.. .- , . V Ir.' on t e even tca t ',i1 t

siit a eju5lv si.ua prccsse.s 2 and k,3.

',ie oirat ions perfor!ed p r o -ess 5 iS s'-c~

ir FI.ur'. 22. Frccess Al .s still required tc ',er." r!- its

processinc first t,- provide input data for procese 5 A2 aLd

A3. Thus "orocess A! ier"cr ,s arn initial Await ce ratIcr or.

the eventcov-t 7N-A3 with an awaited valve of , and since

the event.7ount Is iItlalized to a value of u:pon creatio,-.

A. will b allowed to continue. Proc.-sses A2 a r.! k7' ot t

parforn their initial A,ait t operation-s on the event:count

T\,A1 us iri, the same wai ted value (they each w.s- t c 'eir.

procein- % h hen the set of input data bezomes ava"i>-le'

w.wever, prooess A7 will advirn,--, t:e value o " 7V-A7 c..l.

a ftor both 2 arn A3 'ave comple ted. T is a 1ws A 1c ait

for tie w,, events t., occr 'vi- t 'e on 'm et o. o

prccsses A2 a r d .1) before- it b-Kns -US ith e

, I n,7 - l Ahn'anoe oteration ,erfo r"e- '" Al or. ,Y n c

orooesSes be n exne't n.

7 -is e)a, De i as sown hCA' the :,1orr r c

e-slv rako -e o eve, trOur.n to $v.,rro.5.:= c.rd' 1'

SVrOc,;sceS wi t the sai-e rethcloo,,:y u -d for sel , t : "

c. "-utu, l CI~usi.en SXa"flC

'vtual exlr>n I7 rISu ore in certain

... 'tic s . r . e.. n o ' c, urcc- s s -. n e .i I t to

..e. a h-.red re ,urce (so ', soa o . 8.ata ,, ' .

Rea ulring
Pizf fe r

Al

A2 Single
Shared _______PFINTFF

P r irt PROCIEss
Buf f r

Ak
Wr it e R ee

?uf fer

~UTTAL EXCIUSION E XANI-VTZ

Fipure ?3

PpcOGP:AM *crir:r 'FEIN'TFR FR3CC-SS rC;

/:r eclare evertcouflts FULLE ".I ,v?-Ty, usei l
/* byv all of the processes *

2ECLARE FJL I P () B'YTE 'DAT A 'LIE')
PFCLARF. ':PTY(6) rYT?, DATA (B1-prrY"')

1Declire a local word variable *
77CLARE AGAIN WORD1;

/* Declare synchronization priritive5 x./
Advance and Await

P'. Bee.n Xdinline *

/~Create the eventcounts ~

Do WFII? I; /* ro forever *

CkL WAIT(0 FTLI E AGAIN;

/ " erform Drocescing ~

/* Fr 0 e 5s i 1 P c 0mrple t e, n c iy o h r s :
/4that buf fer i- avai iable

CALL A7-VA,1CF(O7?NFT1Y) ;

/'* lnre-mant the value to 4await ~
k'VAIN = A3AIN +1

F,;/* 0' 7-o F-orever ~

/N; * Cf 'cue

'cF:%NTv'? ?RCCFSS FOE v"UT'Al cC 1'A\t

Figure 24

AD-AC9 301 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/6 9/2
DETAILED DESIGN OF THE KERNEL OF A REAL-TIME MULTIPROCESSOR OPE--ETC(U)
JUN 80 W J WASSON

UNCLASSIFIED NL

Eli

'a 11112.2.

IIIL25 1 .4 1-6

MICROOIPY RI.SOLUITON HIS[CHART

N llN l Il RI-l 4 IANI AI I' "I

PROGDAM MODULES Al TFROIUGE Ak: DO;

/* Declare eventcounts FULLB and a sequencer */
/* used by all of the processes. Sequencer */
/* by all of the processes. Sequencer is
DECLARF FTT!LB(6) BYTE DATA ("FULLEBV);
DECLARE EMPTT(6) BTTE DATA ('EMPTY%');
DECLARE TURNA(6) BYTE DATA ('TURNAV);

/* Declare some local variables among which is T *1

DECLARE T WORD;

/* Declare synchronization primitives *1

/* Advance and Await as before plus Ticket /
TICTFT: PROCEDURE(SEQUFNCER) WO?.D EXTERNAL;

DECLARE SEOUENCER POINTER;
END;

/* Begin Mainline */

/* At this point process needs to print data *-

/* so create the eventcounts as usual and create *1

/* the sequencer *1
CALL CR-ATE$SFQ(@TUPNA);

/* Obtain a "turn" for the buffer /
T = TICK21(OTUFNA);

/* Wait for "turn" to come up *
CALL AW.IT(@EMPTA,T);

/* When awakened, process may use the *1

/* buffer (its .turn has come up)

/* Finished with the buffer so notify ./

/* Printer Process that there is output */
CALl ADVANCE(@FILIP);

END; /* Of Module */

PROCESSES Al Ak FOR MUTUAL EXCLUSION PXAmPLE

FiPure 25

V P

43

Sequencers are used in conjunction with eventcounts to solve

these types of problems.

To illustrate mutual exclusion, consider the

flow of control in Figure 23. !Eere an unknown nurber of

processes (Al through Ak) require access to a single

resource (usei by A3). Printer Process is some krinter

service and the single shared resource is its input buffer.

Obviously only one of the proc!esses requestin, printer

services can be allowed to write into the input buffer at a

time and no process can write into the buffer while Printer

Process is trying to transfer the information to the

printer.

The solution is shown in Figures 24 and 25.

Fiture 24 shows the programminR of Printer Process and

Figure 25 shows how each of the processes requiring printer

services are programmed.

In Figure 16, Printer Process only requires the

use of eventcounts (since it does not alter the data in the

input buffer). It only needs to know when to beein

transferring, the data and to sienal that the buffer is free

upon completion of the transfer. Thus Printer Process only

uses two eventcounts, FULL and EMPTT corresponding to the

buffer's containine' data from a prncess (FTLI and Its teing

emptied 'y Printer Process (EPTT). Thus Printer Pro-ess

performs an Await operation on FTILL and waits for an input

* process to pive it some data. When a process perforrs an.4 9,

Advance on FULL, Printer Process will be awakened to output

it. When Printer Process finish.es outputtinj: the data, it

will perform an Advance on the eventcount TPMFTT and loop

back to the AWAIT.

The other processes, Figture 25, are to use the

same eventcounts, performing Awaits on the eventcounts EMPTT

(waltinR for the buffer to become available) and FUll

(sigr.alling Printer Process that there is data to print

out). Fowever, the awaited value is derived from a TICKET

operation on the sequencer TURN. Note that each cf these

processes will perform TICKE. operations on the same

sequencer (TURN) and so will all receive' unique awaited

values ."turns", as in taking a number from a ticket machine

at a department store, [13]) for the buffer. These TICKFT

operations will return a unique value for the sequencer

every time it is called irrespective of which process calls

TICkeT (provided the same sequencer is used as the

areument). Then the processes simply wait for their "turns"

to come up. Since each process will wait fcr its "turn",

there will only be one process writinor into the buffer at a

time.

This example demonstrates the use of sequencers

in mutual exclusion problems. ks can be seen, the use of

sequencers provides a very simple way to mediate access to

shared resources, particularly useful when the numter of

processes involved is not known in advance or may chanre.

4 96

D. THE OPER&TING SYSTEM GATE

Somehow there must exist a linkawe between the user

processes and the operating system to use the functions

outlined in the preceeding parap.raphs. This is provided ty

linking to each user process one operating system module

known as a GATE. The GATE contains the Pulli'c declarations

for the synchronization procedures which the user may

access. The GATE, then, allows the user to call operating

system procedures in exactly the same way that any ETENAL

procedure would be called. The advantaCe is that only the

GATE (which is very small) must be linked and loaded with

each user process, not the entire operating system.

Additionally, durinp system generation (16 , the Gate is

located (FL/M terminology for the assignment of absolute

addresses) in exactly the same place in memory for all of

the processes. The result is that the Gate sepments loaded

ir with each process will be overlayee. Thus all of the

processes on a single microcomputer will share the same copy

of the Gate code. This minimizes the amount of physical

memory used by the Cate.

Fipure 26 tabulates the required format for all of the

F external procedure declarations that must be included in

each user module makine use of operating system functions.

Note that only the functions actually used need to be

declared.

.49,
4 - -- I

Creating an Eventcount:

CREATF$EVC: PROCEDUPE(EVENTCOUNT) EXTeRNAl;
* DECL.ARE EVENTCOUNT POINTER;

END;

Creating a Sequencer:

CREATE SEQ: PROCEDURE(SEQUENCrR) EXTERNAL;
DECIARE SEQUENCER POINTER;

END;

The Advance Operation:

ADVANCE: PROCEPTRE(EVENTCOUNT) EXTERNAL;
DECLARE EVENTCOUNT POINTER;

ENr;

The Await Operation:

AWAIT: PROCEDURF(EVENTCOUNTVALtTE) EXTERNAL;
DECLARE EVENTCOJNT POINTER,

VALUE WORD;
END;

The Ticket Operation:

TICKET: PROCEDURE(SEQUENC-R) BYTE EXTERNAl;
DECLARE SEQUENCER POINTER;

END;
4 The Read Operation:

READ: PROCEDURE(EVENTCOUNT) BTTE E.TERNAI;
DECLARE EVENTCOUNT POINTR;

* END;

I.,'

KERNEL CALL EXTERNAL PROCEDURE DECLARATIONS

Figure 26

100

E. SHARED PROGRAM CODE

Processes can be made to share code as long as they are

all loaded on the same microcomputer and the shared modules

all have the 'REENTRANT' attribute. This places all variable

storage on the stack so that there is no confusion when two

processes try to invoke the module at the same time.

3ecause the system is bus-oriented (all of the

microcomputers share a single system tus). code sharing

should not usually be forced for processes which reside in

different microcomputers. This requires access to the system

bus for instruction fetches making this technique less

efficient. Therefore, global sharing of code is not not the

expected convention during system generation, although it is

not prevented outright (16) . In fact the programmer will not

be in lirect command as the system generation operator will

make this decision.

One rule of thumb that quite often applies to attempts

at optimization Is that the memory that is saved is paid for

with a loss of speed. Cuite often one can speed execution up

drastically if he is not overly concerned about using

memory.

In summary, the sharing of code segments to save memory

is a technique that is discouraged In this system if the

procpsses which share them reside on different

microcomputers. It will "work", of course, but has a very

detrimental effect on performance.

4 1"t

F. SFAPD rATA

Sharing of data between processes is tiehtly-coupled in

that the data is not explicitly transmitted from one process

to another. Father, data sharing is accomplished by using

shared PL/M data segments. These shared data segments can

reside in global memory where they are directly accessible

to the processes concerned.

P /M allows one to develop programs modularljr by

providing data declarations with FUP1IC and EXT3RNA1

attributes. When the modules are linked, all of the declared

variables (such as byte, word and pointer quantities,

arrays, structures, etc.) are collected into a single data

segment for the program. Thus PI/r1-66 expects that each

program will have its own local data segment.

In modules where a variable is declared with the

EXTERNAL attribute, it is understood that the variable may

actually reside in a non-local data segment. The intention

is that eventually, when all of these modules are linked

together into one program the PU3LIC and EXTFRNAL references

• ,will be resolved.

Processes, though are not linred together. They are

altoeether independent PI/M proprams. Fowever, one can share

data in much the same way as the modules in a single FL/N

., program by declaring all shared data in the processes with

the EXTERNAL attribute. Thus each process will be aware of

* the existence of a separate data segment. The shared data

-- -

. . . . n . . I I I m n l - I I IMl i

serment is then separately created as a PI/M module

containing, only shared data declared with the U.LIC

attribute - no local data or code is ever included. This

module is then compiled separately and linked to each of the

processes sharing the data as if it were simply another

program module. The only difference is that this module will

only have a meaningful data segment. The code segment will

be empty.

It must be emphasized that such data segmerts are the

only means of communication between processes. In

particular, a reference to an absolute address (including

constant or computed pointer values) is N--_V!E allowed. To do

so will destroy the integrity of this operating system

design.

G. FRIVIITGED INSTRUCTIONS

3ecause the operating system controls the physical

resources of the system, certain instructions which are

valid in either the high level language I L/M or the FE6

,* assembly language ASM-86 may not be used. The reason for

this is that their use will interfere with the correct

operation of the system.

1. Interrupt Masking

The operating system uses the interrupt structure of

the system for its own purposes. Because of this, the user

must never, repeat NEVEP, mask interrupts using the assemtly

4e

languaee CLI/STI instructions or the P]I/M-e6 rISALE/MNAIIE

instructions.

Thp nperating system uses interrupts syster-wide

durin, normal operation and requires that interrupts be

unmasked at all times while user processes are executin,.

This is not to be confused with the use of interrupt

handler routines which are required for certain software

packages, notably the PL/M-86 real nuimber library rcutines.

These will not interfere with system operation.

2. Input/Output Operations

Direct access to Input/Output facilities is also

the purview of the operath±p syster. Thus the user is also

prohiited from using the PL/M and ASM-86 I/O instructions.

Instead, a system service is provided to perform I/O

functions for the user.

a,

I1 M

-. "S

APPENDIX 2 - KERNEL MODULES

This section contains the detail "pseudo-code"
for the kernel modules. These have not been
fully tested and should only be considered an
aid to understanding and not final code.

/1- TFE INNER TRAFFIC CONTROILER */

/* VIRTUAL PROCESSOR SCEEDULER */

; External PL/M-66 procedures called by this module
E7TRN GETWORK: FAR,

RUNTHISVP: FAR,
RDYTHISVP: FAR,
LOCKVPM: FAR,
UNIOCKVPM: FAR

SCEDtULER SEGMENT

PUB1IC VPSCHEDULER

VPSCHEDULER PROC FAR

ASSUME CS:SCEEDULER
ASSUME DS:NOTHING
ASSUME SS:NOTEING
ASSUME ES:NOTHING

; ntry point for a call to VpScheduler
; Establish activation record, save ree-isters that

TVpScheduler will use.

PUSH rs

PUSH AX
PUSH CX
PUSF ?P
CALL 1OCK7PM
CAIL RryTISVp
NOV BP, SP

15

h .

MOV CX,0 ; "OH" indicates normal return

; Entry point for a preempt interrupt. Reached by a jump
; from ITC PREEMPT FANDIER jrocedure.

INTENTRY: PUSH CX
CALL GETWORK ; Returns new "f3BR" in the

; AX reeister
POP CX

Swap virtual processors. This is accomplished by savinp
; the SP and PP registers in known locations at the base
; of the stack along with the VpScheduler return type
; flag. The process bound to the selected virtual
; is accessible via the address space descriptor,
; the SS register value.

MOV SS:WORD PTR esP
MOV SS:WORD PTR 2,_P
MOV SS:WORD PTR 4,CX ; Return type flag
,AOV SS,AX ; New address space desc.

; Swap is complete at this point since the SS rezister
now holds the new stack segment value

MOV SP,SS:dORD FTR 0
111oV 1P,SS:WORD PTR 2
PUSH AX
CALL RUNTHISVP
MOV CX,SS:WORr PTR 4

; Check VpScheduler return type flag to determine the type
of return required for thp process.

CMP CX,77F ; Return type flat = Interrupt?
JNE NOFM RET ; If not, do a normal return
QMP INT KET ; If so, do an interrupt return
NORMRET: CALL UNLOCKVPM
POr BP
POP CX
POP AX
POP DSRET

VPSCHEDUI.ER ENflP

ITCPREEMPTFANrLFR PROC FAR

ASSUME CS:SCHEDULER

4 16

ASSUME IS:NOTHING
ASSUME SS:NOTHING
ASSUME ES:NOTHING'

INT VFC: CLI
PUSH ES
PUSH DS
PUSH AX
PUSH C X
PUSF NX
PUSH IT
PUS H SI
PUSH DI
CALL LOCKVPM
CALL RDYTHISVP
JMF INT ENTRY

INT RET: CALL UNTOCIVPM
CALL CFEECKPREEMPT
POP DI
POP SI
POP BX
POP Dx
pCp CX
POP AX
POP DS
POP ES
IRE T

ITC PREEMPT HAND)LER 3NDP

SCHEDT.ULER ENrs

1* Virtual Processor Scheduler Internal Modules *

1* Externally refined Variable reclarations

DCNLARE VPM(1) STRUCTURE
(VP$STATE BYTE,
VP$PP.IORITY BTTE,9
EVCtAW$ID BYTE,
?VC$A4d$VALTT WORD,
SS$REG WORD,
PEtPTND BYTE) EXTE2NAI.;

DECLAPE Vr '$LOCK BYTF EXTERNAL;

4 107

DICLARE(CPU$NUMBER,VP$START,VPtEND,VPStPER$CPU)

BYTE EXTERNAL;

DECLARE IDLEtDBR WORr EXTERNAL;

DECLAFE CPU$INTtVECTOP(16) BYTE EXTERNAL;

Literal constants */

DECLAPE FALSE LITERALLY '0',
READY LITERALLY "1
?TTNNING IITE LIY 3',
WAITINN LITERALLY '7',

IDLE LITERALLY '15',
TRUE LITERALLY '119';

External Procedure Declarations *1

TCPEHANDLER: PROCEDURE EXTERNAL;
END;

GETWORK Procedure
/* ------.-------------------------------
/* Function call. Searches the Virtual Processor Map */
/* the highest priority runnable virtual processor
/* (state is either ready or idle with the Preempt *1
/* Perdine Flag set). Returns the DBR value (SS
/1* Repister value) of the bound process in the Ax

/egister.

GFTWCFT: PROCEDURE WCRD REENTRANT PUBLIC;

DECLARE (PPI,I) BYTE;
DECLARE SEIECTED$DBR WORD;

/* Begin search of the Virtual Processor Map usine the
/* priorities. Initially set to the lowest possible. */
PPI = 255;

DO /* Search Virtual Processor Map for the hiehest
/* priority ready virtual processor to run. */
I = VP'START TO VPEND;

IF /* The virtual processor can be selected, it is */

4108

/* is either the ready state, or the idle state :/
/* with a virtual preempt pending. */

((VPM(I).VPtPRIORITT < PRI) AND
(VPM(I).VP STATE = READY OR
(VPM(I).VP$STATE = IDLE AND
VPM(1).PEtPEND = TRUE))) THEN

DO; /* Select the virtual processor. */
SELECTED$LBR = VPM(I).SS$REG;
PRI = VPM(1).VPtPRIORITY;

ENr; /* Do. Select the virtual processor. */

END; / DO loop search of the Virtual Processor Map. */

/* return the SStREG value of the selected virtual */
/* processor in the AX (Accumulator) Register.
RETtRN SELECTED rBR ;

END; /* GETWORK Procedure. */

/* R'UNTHISVP Procedure
P .. --
/* Sets the selected virtual processor to running. *I

Searches the Virtual Processor Map with the *1
process 's SEI.FCTEDj$BR.

RUNTFISVF: PROCEDUR!(VPtDZR) REENTRANT PUBLIC;
DEClARE VP$DZR *ORD,

VP BYTE;

VE = VPt"ND;

DC WEIIE /* Look for the VP with this SS$REG value. */
(VPM(VF).SS$REG 0 MPLDBR);

VP = VP - 1;

END; /* Do While *I

VPM(VP).VP$STATE = RUNNING;

RETU'RN;
END; /- RUNTFISVP Procedure. */

RrTTFISVP Procedure

4 19

/-* Sets the currently running virtual processor's
/1" state to ready.

RDYTFISVP: P.OCELURZ REENTR ANT ?UILIC;

VPM(ITCETMVP).VP1STATE = READY;

RETTTR N;
END; /* RDflTHISVP Procedure */

I* LOCKVPM Procedure */
I* -----..------------------
/~* locks the Virtual Processor Map.

LOCVPM: PROCEDURE RFENTRANT PUtItC;

/* PI/"-S6 built-in spin-lock procedure. */
DO WHILE LOCKSET(0VPM$LOCK,119);
END;

RETURN;
END; /* LOCKVPM Procedure. */

UNIOCK PM Procedure
I* ------------.---------------------------
/* Unlocks the Virtual Processor Map.

UNICOCKVPm: PROCFrURE REENTRANT PUTIC;

VPMtLOCK = 0;

RETURN;
END; /* UNLO,"KVPM Procedure. */

S F T WPt.INT Procedure
.i------ ------- -i---------------------------

Generates a hardware preemrpt Interrupt. */

HD"dRtINT: PROCEDURE(CPU) REENTPNT PUBLIC;
rICLARE CPU PYTE,

lip

- I

FORTA LITERALLY 'CCIH';

OUTPUT(PORTA) = CPUINTVZCTOR(CPU);

RETURN
END; /* EDWFtINT Procedure. */

Inner Traffic Controller Interface Modules */

/* IDLEWVP Procedure* ----------------------------------
/* Sets the state of the virtual processor now *1
/* running to idle, binds the "Idle DBR", sets a
/-* high priority and calls Vp Scheduler.

IDLZ"VP: PROCEDUR REENTRANT PU3LIC;

DECARE VPTOIrIE BYTE;

VPtTOtIDLE = ITCRET$VP;
VPM(VP$TOtIDLE).VPtSTATE = IDLE;
VPm(VPTOIDLE).VP$PRIORITT = 10;
VPM(VPtTOtIDLE).SStREG = IDLE DSR;
CAfl VDSCEDUITLER;

RETURN;

END; /* ItLEVP Procedure. */
* /******n *******************************~****** /

*/ ITC LOADvP Procedure
/* -------- - -- -------------------------------- *

Performs a "Swap Virtual DB". Binds the virtual *1
1* / processor to the new process, updates VPtPRIORITT e/

and SS$REG, and sets state to ready.

ITCt1OArtVP: PROCErUFE(PRI$PARM,DER$PARM) REENTPANT PU1tIC;

DECLARE PRI$PARM BYTE,
DBR$PARM "fOPD,
LOAr$VP BYTE;

l11

/* Identify runnine virtual processor. */
LOADtVP - ITCRETVP;

/* Bind the virtual processor. *1
VPM(LOAD$VP).VP$STATv - READY;
VPM(LOADtVP).VP PoIORITY - PRItPRM;
vpMLOAD S SIG - DR$PARM;

/* Schedule the virtual processor. */

CALL VPSCFEDULER;

RETURN;

END; /* ITC$LOAD$VP Procedure. */

1* ITCtRET$VP Procedure
/1.-- ----------------------------- *
1* Function call which returns the identity of the

virtual processor which is ncw running cn the */
physical processor. */

ITCRET 7P: PROCEDURE -TT REENTRANT PUBLIC;

/* Search through the set of virtual processors assigned */
/* to the phsyical processor.
RUNNI4G$V. Ir = VP START;

DO WFILE /* Fave not found the running virtual processor /
(VPmF(UNNINGvPIr).VP$STATE 0 RUNNING);

/* Search next entry. *1
RUNNING$VPtID - RUNNING$VP$ID + 1;

END; /* While loop search for running VP. RUNNINGVP$I */
/* points to the runnini virtual processor. */

/* Return the identity of the virtual processor */
/* in the AX (Accumulator) Register

RETURN RUNNINGVPI;

END; /* ITC$RETVP Procedure. */

1*. / C !CKPREEMPT Procedure */
*---------------------------------------

112

/* Checks for a virtual preempt pendine'. If there */
is one, calls the Traffic Controller Prpempt */

/* Pandler. */

CFECKPREEimPT: PROCEDURE REENTRANT PUELIc;

DECLAE RUNNI4G$VP BYTE;

/* Find the identity of the runnirg virtual processor */
RITTNING$VP - ITC$RET$VP;

DO WEILE /* Preempt Pending Flag of the virtual e/
/* processor is on. */
VPM(RUNNINGtVP).PE$PEND = TPUE;

/* Reset Preempt Pendine Flap. */
VPm(RUNNINGtVP).pE$PEN - FALSe;
/* and call Traffic Controller Preempt Fandler. €/

CALL TC$PEtFANrLER;

'RUNNINGtVP = ITC$RET'VF;

END; /* While loop handlin- of the virtual preempt. */

RETURN;

END; /* CFECYPREE!?T Procedure. */

ITCtSFN"l$PPEEPT Procedure
* -- *
/e Issues virtual preerpts (preempt Interrupts to
/* virtual processors.) tv setting the appropriate */

/* Preempt Pending Flag In the Virtual Processor Yap */
/* ani then Issuinp a harlware Interrupt if the
/* processor is on a different physical processor. l

I ITCtSENDtPPFEMPT: PROCEETRE(TGTtCPtU VPtID) REENTRANT Pr2IIC;

DECLARE TGT CPTJ WORD,

vptiE WORN;

/* SET THE FRE-ZMPT PENDING FLAG */
VPM(TGTtCPU * VPS$FERtCPU + VP$ID).PjP7A': = TRU7:

i113

IF (TGT$CP7 0> CPU$NUMBER) THEN
CALL EDWR$INT(TGTtCPU);

RETUPN;
END; /* ITCtS-END$PREEMPT Procedure. *

ITC$AWAIT Procedure
1* -------------------------------------- *

1* Eventcount synchronizatior mechanism for use by the *
1* Inner Traffic Controller in the management of
1* system resources. *

ITCtAVAIT: PROCEDU P(EVC ID),AEAITEDtVALTTJ! ?REENTRAN", Pt~tIC;
DECLARE EVC$ID BYTE,

AWAITED$VALUE 4ORL,
B!'NNING$VP BYTE,
I BYTE;

/* Lock the Virtual Processor mlap *
DO WHILE IOCKSET(C-VPM$'tOCK.1l9);
END;

DO ;
/* Identify the running virtual processor ~
RUNNINGtVP = ITCt2FTtVP;

IF SYS$E7CtTABLr(EVC $ID) < AW1AITE'$7ALU3! TEN

DO;
VPM(RUNNING$VP).VP$STATE W AITING;
VPm(RTNNING$VP).EVC$A4dtIL = !VcID;
VPM(FUNNING$VP).EVC$A'ItVALUZ = AlAITEDtVAL!E;

END;

ELSE

ED vM(RUNNING$VP).VMSAT1 = READY;

/W* Schedule the virtual processor. /

CALL VSCM!DLER;

/* 'Irlcock the Virtual Processor Map. *
VP~tLOCK e;

4 114

RETUR~N;
END; /* ITCtA!WAIT Procedure. *

ITCtAflVANCE Procedure
/*--*

Evertcount signalling mechanism. Used by the Irner ~
1* Traffic Controller in manapine resourc:es. *

ITCtADVANCE: PRoCurm(EVC ID) REENTRANT PTMlIC
rECLARE !EVC$ID BYTE,

I BYTE;

/* Lock the Virtual Processor MIap *
DO WHILE IOCKSEI((%vPm$LOCK,1l9);
END;

STsEVCTAELE(EVC$ID) = SYStEVCtTAELEVCID) 1

Do I = 0" TO (NR$VPS -)
IF VPm(I).EVC$AWtID = EvCnir THTN

IF VPM(I).EVC$AWtVALTE <= SYS EVC$TA2L!(FVCtI-,' TFZ:;
LO;
VPM(I).VPtSTATE REArY;
VPM(I).EVC$AW~ IL =255;
VPm(I).EVC AW $ALUZ = 0
IF (I < VP START) OR (I > vp:4ENr) vcEEN

CALL, EtWRtIN (I/VPStP7-RtCP);
END;

END;
CALL VPSCFECULER;

/* Unrlcck the Virtual Processor Map *

RETURPN;
END; /* ITCtADVANCE Procedure. *

1* ~ ~ TAFFIC CONT70L!E "

1* External Global 1ata Declarations

I* ~ * ~ *~ V

115

DECLARE AFT(l) STRUCTURE
(STATE BYTE,
AFFINITY BYTE,

vp$ I r.BYTE,
PR IOR ITT BYTE,9
LOADt'TFREAD BYTE,
EVC$VA1UEz$AW WORD,
THREAD BYTE,
DBR WORD) EXTERNA.;

DECLARE APT$LOCK ZYT 3XTERNAL;

DECLARE PROCESSES LITZ EXTERNAL;

DECLAR.E LOAEtI.IST(16) BYTE EXTERNAL;

DECLARE ZVC TABLE(l) STRUCTUR3
(EVCtNAM2(6) BYTE,
FVCtVATUF WOD
APTtPT'R BYTE) 'EXTERNAL;

DECLARE EVENTS BYTE FXTERNAT;

DECLARE SEQ TAZLZ(1) STFCTUPIE
(SE NAME(6) BYTE,
SEOVALUE WORL) EXTEFRNA1;

DECLARE S7,QUENC!,RS BYTE EXTERNAL;

DECLART (C-rU$N',;rIBEn VP$START ,VPtlN,VSPECP1)
IYTE EXTERNAL;

DECLARE (N PPS,NR$VPS) BYTE EXT72NA1L;

DECLARE CPUtINTtVECTOR(l6) BYTE EXTERNAl.;

DECLARE PPO$PAPAM' STRUCTURE
(FLAGS WORD,
Cs WORD,
IP WOrE,IES WORD,
CX WORD,

r'x WORD,
rx WORE),

51 WORD,

CIS WORD,
PRIORITY BYTE,
AFFINITY PYTE) EXTERNAL;

Literal Constant Declarations */

DECLARE FALSE LITERALLY 'e',
READT LITERALLY '1't
RUNNING LITERALLY '3',
BLOCKED LITERALLY '7'
TRUE LITERALLY '119'9
NOT$FOUNL LITERALLY '255',
NIL LITERALLY '255';

/* External Procedure Declarations

ITCORET$VP: PROCEDURE BTTE EXTERNAL;
END;

ITC$LOArtVP: PPOCEDUPE(PRI$PARV,ImR$?ARM' FXTERNAL;
DECLARE PRI$PARM BYTE,

DBRFARM iORr;
END;

IDLEVP: PROCEDURE FXTFRNAL;
END;

ITCtSENrPRFEMPT: PROCEnUPE(TGT$CPT,VPtIL) EXTFNL;
DECLARE TGT$CPU W3Rfl,

VPtID WORr;
END;

/* THE PROCESS SCFEDULER */

1*/" TCtSCHEDULER Procedure */I /*- -
Process scheduler. Searches for the bhihest */

/* priority runnable process to load onto the
virtual processor. If no runnable process is

/* found, will idle the virtual processor. */

TCtSCFEDULEP: PROCErURE PEENTRANT FUMBLIC;

117

77 -

DECLARE PROCESS BYTE,

SELECTMPROCFSS BYTE;

PROCESS = LOAD:JLIST(CPUmNUMBER);

SEUECTtPROCESS = FALSE;

/* Search down Load list for the highest priority
/* ready process runnable on this physical processor. */
DO WHILE /* Have not found a runnable process. */

(SELECT$PROCESS = FALSE);
IF /* Haven't reached the end of the LoadtList */

(PROCESS <> NIL) TFEN

DO; /* Check process. */

IF /A: Process is ready. /
(APT(PROCESS).STATE = RZADfl THEN

/* Select the process to run. /
SELECTtPROC!SS = TRUE;

ELSE

/* Check the next process. /

PROCMSS = APT(PROCESS).1OADrTFREAr;

END; /I. If then else. /

EN; /* While loop search for next ready process. *1

IF /* Have found a ready process to run. '/
(SELECT$PROCESS = TRUE) THEN

DO; /* Give away the virtual processor. '/
APT(PROCESS).STATE = RUNNING;
APT(PROCESS).VP$ID = ITC$RETtVP;
CALL ITCtLOAD$VP(APT(PROCESS).PRIORITT,APT(PPOCESS).LBR);

END; /* Give away the virtual processor. */

ELSE

/* No runnable process has been found so idle the
/* virtual processor. */
CALL IDIEtVP;

RETUR? N;

ili

f", , , , d ,. ,

END; /* TC SCHEDULER Procedure.-./

PROCESS SCHEDULER INTERNAL MODULES *1

1* TC$IOCATE$EVC Procedure.
S--

I* Function call. Returns the identity of the
eventcount (the index of the eventcount in the

/* Eventcount Table) in the AX (Accumulator) *
Repister. Input argument is a pointer tc the *1
byte array in the user process holdin" the name *I

/n of the eventcount. */

TC$LOCATE$EVC: PROCEDURE(F,$NAMEZPTR) BYTE REENTRANT PUBLIC;

DECLARE E$NAME PT t POINTFR;
DECLARE CHAR BASED ENAME$FTR (5) BYTE;
DECLARE I BYTE,

EVC$ID BYTE,
MATCH BYTE;

I =
EVC$ID = 0;
MATCH = FALSE;

/* Search down the eventcount table to locate the */
/* desired eventcount by match ine the names

DO WHILE /* haven't found the eventcount and I
/* havenAt reached end of table

(MATCH = FALSE) AND (EVC$ID < EVENTS);

IF /* the two characters match */

(CFAR(I) = EVC$TABLE(EVC$It).EVC$NAME(I)) TEFN

DO; /* Check for end of strings */

IF /* Reached the end of the strings */
CHAR(M) = ' " TEEN

/* Pave located the desired eventcount *1
MATCH = TRUE;

119

IL I I I I I I

ElSE

/* look at the next character */
I = I + 1;

END; /* Check for end of strings *1

ElSE

DO; /* Ready for check next entry */

I= e
Evc$Ir = EVC$Ir + 1;

END; /* Ready for check next entry */

END; /* While loop search for desired eventcount 3/

IF /* Pave found the eventcount /
(MATCP = TRUE) TEEN

/* Return its index in the EVCtTABIE /
RETURN EVCt ID;

ELSE

/* Return NOTtFOUND error code /
RETURN NOT$FOUNL;

END; /*' TCtLOCATE EVC Procedure. /

TC LOCATE-SE Procedure 2:/

/* ----------------------------------
/* Function call. Returns the index in the

sequencer table of the sequencer name .iven
/* to it. Input arguament is a uointer to the

string name of the sequencer in the application 'V
/* propram.

TC$IOCATtSEC: PROCErURE(S$NAM7.PTR) BYTE REENTP.ANT !UBLTC;

rECLAFE S$NAvE$PTF POINTER;
:ECIAPSE CHIR ?ASED StNAME'PT.3 (5) :IYT1;
DECLAPE I BYTE,

SEQ ID BYTE,
MATCH BYTE;

120

,t
o

-

I=e;
SEC ID e;
MATCP = FALSE;

/* Search down the sequencer table to locate the */
/* desired sequencer by matching the names.

DO WHILE /* Haven't found the sequencer and */
/* haven't exhausted the list.

(MATCH = FALSE) AND (SEO$ID < SECUENCTRS);

IF /* The two characters match. */

(CHAR(I) = SEC$TABLE(SEQCID).SEC tNAME(I)) T!N

DO; /* Check for end of strings. */

IF /* Reached the end of the strinp-s. *1
CHAP(I) = '%' THEN

/* Have located the desired sequencer. -/
MATCF = TRUE;

ELSE

/* look at the next character. -1
I = I + ;

END; /*: Check for end of strines. :-'

ElSE

DO; /* Ready for check of next entry. :/

I=
SECID = SEQOID + 1;

-ND'; /4 Ready for check of next entry. */

END; /*, While loop search for desired sequencer. */

IF /* Fave found the sequencer. './
(MATCH = TRUE) THEN

/* Return its index in the SEOtTADLE. */
RETTTRN SE ID;

ELSE

121

/* Return NOTtFOUND error code. */
RETURN NOT$FOUND;

END; /* TC$IOCATE$SEC Procedure. */

/* TRAFFIC CONTROLlER INTFRFACE MODULES *1

AWAIT Procedure
/* ---

Inter-process synchronization primitive. *I
Suspends execution of the calling prccess until

1* the event specified in the input areument */
~* 'E7C$VALtPARM' has occurred (the eventcount */

reaches this value). The result is that the
1* process will give away the virtual processor */

to which it is bound.

AYAIT: P=OCEDURE(EVENTCOUNT,VAL'IJE REENTRANT PUlIC;

DECLARE EVFNTCCUNT POINTER,
VAIUE wG D,
EVC ID BYTE,
C7?RERT$VP FYTE.

PROCESS BYTE;

/* Assert zlobal lock on the Active Process Table. */
DO WHILE 1OC7SET(CaAPTLOCK,119);
END;

/* Get identity of the virtual processor running on
/* physical processor.
CURRFNT VP = ITC$RET V?;

/* Search the Xctive Process Table (by the load list
/* to find the process bound to Lhe rundn*n virtual
/* processor. *1
PROCESS = lOADLIST(CPUtNUMBER);

DO WHILE /* Haven't found the process bound to this vp. e/
(APT(PPOCESS).VPtID <> CYJRRENT VP);

/* look at the next entry in the !oadtList. ,/
PPOCESS = APT(PROCESS).LOAD$TEREAD;

122

END; /* While loop search of Loadtlist. */

/* Gpt the EVC$TABLE index for this eventcount. :/
EVC$ID = TCLOCATE$EVC(EVENTCOUNT);

IF /* This process is to enter the blocked state. I

EVC$TAE1F(EVC$ID).EVC$VALUE < VALUE TFEN

DO; /* Set the required APT values. */

APT (PROCESS).STATE = PLCCKED;
APT(PROCESS).VP ID = NIL;
APT(PROCESS).EVCtVALUE AW = VALUE;

/* Add blocked process to head of blocked list. /
APT(PROCESS).THREAD = ?VC TABLE(EVC$ID).AETPFTR;

/* Feset table pointer to the current process. */
EVCtTALE(EVC1ID).APT$PTR = CURRENTtVP;

END; /* Do. Place process in the blocked state. */

ELSE

/* If the event has already occurred, process will */
/* enter the ready state -- it will not be blocked. /
A.T(PROCESS).STAT7 = READY;
APm(PROCESS).VP'ID = NIL;

CAIL TC SCFEUTXEF.;

/* Unlock global Activ= Process Table Lock. /
ATLOCK = e;

RETURN;

END; /* AWAIT Procedure. -/

ADVANCE Procedure* ------------------------------------
Used to signal the occurrence of a specified

/1* event. Ir.crements the current value of the */
/* eventcount. Also signals all processes which *I

are in the blocked state waiting for this event. 'I

123

ADVANCE: PROCEDURE(EVENTCOUNT) REENT7ANT PUBLIC;

DECLARE EVFNTCOUNT PCINTER,
EVCID BYTE,
PROCESS BYTE,
PREV BYTE,
PEP BET
VP BYTE,
HIPRI BYTE,
PETO SEND BYTE,
PE-ASENT BYTE;

DECLARE PE'PHP(16) BYTE,
PEvP(4) BYTE;

/* Assert global lock on the Active Process Table. */
DO WHILE LOCKSET(@APT$LOCK,119);
END;

/* Increment the value of the eventcount by one. /
EVC$TABLF(EVC$ID).EVC$VAI.UF =
EVC TABLE(EVCtID).EVCtVAlUE + 1;

/* Search Blocked list associated with the eventcount */
/* and unblock those processes waitirg for this
/* event. Set PROCESS to the first member of the */
/* Blocked List.
PROCESS = EVC TAILE(E7C"ID).AFT PTR;
PPEV = PPOCESS;

/* Initialize PEtPHP array. *-
DO PHP = 0 TO NRtPFPS;

PE$PHP(PFP) = FALSr;
ENID;

* DO WHILE /" Not end of Blocked List. '/
PROCESS <> NIL;

IF /* The event has already occured. */
(EVC$TABLE(EVC$Ir).EVC$VALUE >=
APT(PROCESS).EVC$VAIUE$AW) THEN

* DO; /" Unblock process (set state to ready), zero */
/* Eventcount Value Awaited entry of APT and *1
/" flag the physical processor for preemption. '/
APT(PROCESS).STATE = REAY;

. APT(PROCESS).ZVC$VALUE$kW = 0;
PEZPHP(APT(PROCESS).AF1INITY) = TRUE;

124

/* Remove process from the Blocked List. -1
IF /* First member of the Blocked list. */

(PREY = NIL) THEN

/* Reset pointer around the deleted member. /
EVC$TABLE(EVC$IL).APT$PTR =
APT (PROCESS).THREAD;

EISE

/* Set previous member's pointer around the */
/* deleted process. */
APT(PREV).THREAD = APT(PROCESS).TEREAr;

END; /* Do. Remove process from Blocked List. /

/* SEARCH NEXT ENTRY */
PREV = PROCESS;
PROCESS = APT(PROCESS).THREAD;

END; /* W'hile loop search of Blocked List. */

DO /* Look for the PHP's with VP's to preempt. */
PHP = 0 TO P#PS;

IF /* FFP is flagged for a preempt. */

PE$PFP(PHP) = TRUE THEN

to; /* Find VP's to preempt. '/

ro /* Flae all VP's for preemption. */
vp = e TO VPStPERC4PU;

PF$VP(VP) = TRUE;

END; /* Initialize PE$VP array. /

HIRPI= e;
PE TO$SEND = 0;
PROCESS = LOAD$LIST(ERP);
rO WHILE /* Search down Load list to find those */

/* processes which should be running. €/
S~ * retermine which Vrs not to preempt. *,

(PP.OCESS <> NIL) AND

(HIPRI < VPS PER$CPU);

12.

IF /* Found a process which should te runninF *-
/* that actually is running. */

APT(PROCESSI.STATE = RUNNING TFEN

DO; /* Increment number found and do rot */
/* preempt its VP.

HItPRI = HIPRI + 1;

PEtV?(APT(PROCESS).VP ID) = FALSE;

END;

ELS E

IF * Found a process which should te running */
/* but is in the ready state. */
APT(PROCESS).STATE = READY TEEN

DO; /* Increment number found and indicate
/* that a preempt will have to be sent */
/* to get it running.

EI PRI = EI$PRI + 1;

PETOSEND = PEWTO SEND + 1;

END;

END; /* While loop search of load List. /

PEtSENT = 0; /* Used to keep track of the */
/* rurber Of preempts sent. -/

VP = 0; /* Begin at first VP on the PEP. */

DO WEILE /* There are more preempts to send. /
(?ESENT <= PETOSENI);

IF /* A preempt is to be sent to this VP. */
PE$VP(VE) = TRUE TEEN

DO; /* Issue the preempt and tally it. */

CA L ITCtSFND$PRFEMPT(PFP,VP);
PE$SENT = PE$SENT + 1;

END; /* Issue preempt. */

/* Check the next VP. */
VP = VP + 1;

126

END; /* While loop send preempts. */

END; /* While loop determine VPs to preempt. */

END; /* Determine PHPs to preempt. */

END;

/* Ready the calling process. */

/* Get identity of running VP. */
VP = ITCOET$VP;

/* Search Load List Thread to find VPtID match. /
PROCESS = 1OADtLIST(CPUtNUMBER);

DO WRILE /* Rave not found process bound to this VP. */
(APT(PROCESS).VP$ID 0 VP);

/* Look at next ertry in Load List. */

PROCESS = APT(PROCESS).LOADTEREAD;

END; /* While loop search of Load List. */

/* Ready the callinp process. */
APT(PROCESS .STATE = REAY;
APT(PROCESS) .VP ID = NIL;

CALL TCtSCFEDULER;

/* Unlock Active Process Table. */
AT TLOCK = 0;

RETUR N;
END; /* ADVANCE Procedure. */

/* TICKET Procedure
/*------ -- - ------------ - ----------------------------- *

Function call. Returns a unique sequencer value. */

TICKET: PROCEDURE(SPOUENCER) BYTE REENTRANT PUPLIC;
DECLARE SEQUENCER POINTER,

SEQtID ETTE,
VAU i7

127

/* Lock the Active Process Table. */
DO WHILE LOCKSET(OAPTSLOCK,119);
END;

/* Identify the sequencer. /
SEQ$I = IOCATF SEO(SEQUENCER);

/* First obtain value to be returned to the caller /
VALUE = SEQ$TABLE(SEQ$ID).SEQ$VALUE;

/* Then increment the value of the sequencer */
SEQTAP1E(SEqIr).SE$VALUE =
SEQ$TABLE(SEQ$ID).SEQ$VALUE • 1;

/* Unlock the Active Process Table */
APT$LOCK = 0;

/* Return the value to the caller. */
RETURN VALUE;

END; /* TICKET Procedure. */

READ Procedure */
-----------.------ -----------------------------

/~ F~unction call. Peturns the current value of the *,
eventcount specified in the call.

READ: PROCEDTIRE(EVENTCOUNT) BYTE REENTRANT PUBLIC;
DECLARE EVENTCOUNT POINTER,

EVC$ID BYTE,
VALUE WORD;

/*' Lock the Active Process Table. *-/
DO WHILE LOC1SET(0.APT$LOCK,119);
END;

/* Identify the eventcount. */
EVCOID = LOCATE EVC(EVENTCOUNT);

/* "Read" the current value of the eventcount. */
VALUE = EVC$TA3LE(EVC$IL).EVC$VALUE;

/* Unlock the Active Process Table. */
APT$LOCK - 0;

* ' /* Return the current value to the caller. */
PFTUN VALUE;

128

,-w ,-- - • . . a" •

END; /* PEAD Procedure. */

/* CREATE$EVC Procedure
* --------- --- *1/* Creates" an eventcount by making an entry for it */

in the eventcount table "EVC4TABLE and setting */
/* the initial value of the eventcount to e. */

CREATE4EVC: PROCEDURF(EVENTCOUNT) REENTRANT FUELIC;
DECLARE rVENTCOUNT POINTFP;
DECLARE CHAR BASED NAME (6) BYTE;
DECLARE I BYTE;

/* Lock the kctive Process Table *1
DO VEILE LOCKSET(QAPTMLOCKli9);
END;

IF /* The eve.tcount had not already been created */
LOCATE$EVC(EVENTCOUNT) = NOTtFOUND TE!-N

DO;
I =Q;
DO /* Copy the name into EVC$TABLE */

WHILE (CHAR(I) > '%') AND I < 5);

/* Copy the character into the table. */

EVC$TABLE(EVENTS).EVC$NAME(I) = CEAR(I);

END; /* While loop. */

/* Insert the delimiter '%' in the table entry. I
4 EVCtTABLE(EVENTS).EVC$NAME(I) = . P

/ Increment EVENTS to indicate a new addition. */
EVENTS = EVENTS + 1;

END; /* Create the eventcount. *1

/* Unlock the Active Process Table. x/
.' AP'AtLOCK = e;

RETURN;END; /* CREATE EVC Procedure. !

/* CREATEtSUE Procedure

129

/1* Creates- a sequencer by establishina an entry in */
the sequencer table SEQ$TkB1!" and sets the
initial value to 0. */

CPEATEZSEC: PROCELURE(SECUENCER) R3ENTRANT PUBLIC;
DECLARE SECUENCR POINTER;
rECLARE CFAF BASED NAME (6) TTI;
DECLARE I BYTE;

/* Lock the Active Process Table */
DO WHILE LOC!SET(@APT$LOCK,1lI);
END;

IF /* The sequencer had not already been created */
LOCATE4SE(SEQUENCER) = NOT$FOUND THE

DO;
I =?;
DO /* Copy the name into SEQTABLE I
WFILF (CFAR(I) 0 '%') ANr (I < 5);

/* Copy the character into the table. */
SECtT.ELF(SEQUENCERS).SE{ NAE(l) = CFAR(I);

END; /* While loop. */

/* Insert the delimiter '%' in the table entry. */
SEQ$TADIE(SEQUENCERS).SEO$NAME(I) =

/* Increment SEQUENCERS to indicate a new addition. */
SEQUENCERS - SEQUENCERS + 1;

END; /* Create the sequencer. *'/

/* Unlock the Active Process Table. */
APTtLOCK = e;

RETUFN;
END; /* CREATE$SEC Procedure. */

/* CREATE$PROCESS Procedure *1
/* -- *
/ "Creates" a process by initializin, Its stark and */

, , I initializine an entry for it in the Active Process *1
/* Table.

130

CREATE$PROCESS: PROCEDURE(PPB$PTR) REENTRANT PUB!IC;
DECLARE PPB$PTR POINTER;
DECLARE INITtSTACKMFAME STRUJCTURE

(FL 'WORD,9
Cs WdORD,
IP WORD,
ES WIORD,
DS WORD,
AX WORD,
CX WORD,
DI WORD,
21 WORD,
SI WORD,
rI VORD,
RET WORD,
BP WORD,
SP WORD);

DECLARS INTTRRUPT LIT2ERALLT '119-;

/* Lock the Active Process Table. *
DO WFIL! LOCTSET(@APT LOCK,119);
END;

/* Set up initialization stack frame. *
INIT$STACKtFRAMZ.FL = PRO$PARAMFL;
INIT$STACK$FAME.CS = PRO$PARAM.CS;
INIT$STACKtFRAME.IP = PROtPARAM.IP;
INIT$STACKMTAME.7- = PROtPARAM.FS;
INIT$STACK$FRAME.DS = PRO$PARAM.DS;
INIT STACK$FRAME.AX = FR0tPARAMAX;
INIT$STACK FRAME.CX = PFO$PARAM.CX;
INIT$!TACK$FRAME.DX = PROPARAM.D;
INIT STACEMFAME.?X = PROPARAM.BX;
INITtSTACKtFFAME.SI - PROtPARAI'.SI;
INIT$STACKtFRAME.DI - PROPARArM.DI;
INITtSTACKMFRAME.RET INTE!RRUPT;
INITtSTAC!tFRAtE.PP - e
INIT$STACE$EAME.SP = 6;

/* Move initialization stack frame into memory. *
MOVBPSIN IT$STACK$FP.Ar'E ,PP .DDR ,26);

/* Enter process In Active Process Table. *
APT(PROCESSES) STATE = PPE.STATE;
APT(PROCESSES).AFFINITT 12PB.AFFINI'LT;4 131

T!

APT(PROCESSES).VP$IP = NIL;
APT(PROCESSYS).?RIORITT = PPE.PRI3RITY;
APT(PROCESSES).EVC$VALUE$Ad = e;
APT(PROCESSES).THREAD = NIL;
APT(PROCESSES).DBR = PPB.DBR;

/* Enter process in the Loaded List by priority */

PREY = NIL;
NEXT = LOADMLIST(CPUJNUMBER);
DO WHILE PPB.PRIORITY > APT(NEXT).PRIORITY;

PREV = NEXT;
NEXT = APT(NEXT).LOAD$THREAD;

END;
IF NEXT = NIL TEEN
APT(PFEV).LOAnTEREAD = ENTRY;

ELSE
IF NEXT = LOArLIST(CPU>NUM!ER) THEN
DO;

APT(ENTRY).LOADSTHREAD =
LOAD$LIST(CPUANUMBER);

LOAD$LIST(CPUNUMER) = ENTRY;
ELSE

DO;
APT(PEV).LO&DTREAt = ENTRY;
APT(ENTR.).LOAD$THREAD = NEXT;

END;

/* Unlock the kctive Process Table. */
APT$IOCK = 0;

RETURN;
END; /* CPEATE$PROCSS Procedure. 4/

/* TCPFFANrLER Procedure
/* -..-------------------------------- :
/* Fandles preempt interrupts. Called by the
/1* Traffic Controller in response to a virtual

preempt interrupt. This module serves as the
1/ virtual interrupt entry point into the Traffic

Controller.
I----------------- -Constitutes a loop. <-----/

TCPEHAND1ER: PROCEnURE REENTRANT PUBLIC;

/* Lock the Active Process Table. /
DO WHILE LOCKSET(PAPT$LOCK,II);

132

. lmm~~~~~~- mm tmm mm lm~m m i mm

END;

CALL TCtSCFFPUIER;

/* Ujnlock the Active Process Table. ~:
AFT IOCK = e
RETURN;

END; /~TC$PE HANDLEP Procedure. ~

.4 133

BIBLIOGRAPHY

1. Anderson, G. A. and Jensen, F. D., "Computer
Interconnection Structures: Taxonomy,
Characteristics, and Examples, Computine Surveys,
v. 7, no. 4, p. 17-213, December 1975.

2. Daley, R. C. and Dennis, J. 1., "Virtual Memory,
Processes, and Sharing in Multics," Communications
of the ACM, v. 11, p. 3e6-312, May 126E.

3. Dijkstra, E. W., "Cooperating Sequential Processes." in
Proerarrming Languages, F. Guneys, ed., Academic Press,
1968.

4. Horninp, J. J. and Randell, B., "Process Structurin."
Computing Survevs, v. 5, no. 1, p. 5-30, March 1973.

5. Intel Corporation, PI/M-86 Programming Manual, 197E.

6. Intel Corporation, ISBC 86/12A Single Board CornTuter
Hardware Reference Manual, 1979.

7. Intel Corporation, MCS-86 Software Development Utilities
Ouerating Instructions for ISIS-Il Users, 197q.

E. Intel Corporation, MCS-66 Macro Assembly Lanpua.e
Reference Manual, 1.979.

9. Intel Corporation, MCS-86 Macro Assembler Operatirg
Instructions for ISIS-II Users, 1979.

10 . Intel Corporation, ISIS-I1 PL/M-66 Corpiler
, Operator's Manual, 1979.

11. O'Connell, J. S. and Richardson, L. D., Distributed,
Secure resign for a multi-Micropricessor O peratin,-
System, Naval Postgraduate School, li79.

134

12. Organick, E. I., The Multics System: An "xar-inatior
of Its Structure, The MIT kress, Carbrid~e,
Massachusetts, 1972.

13. Reed, D. P. and Kanodia, R. J.., "Synchronization with
Eventcounts and Sequencers, Communiations of the
ACM, v. 22, p. 115-123, February 1379.

14. Reed, D. P., Processor Multiulexin. in a Layered
Operating Sstem, M.S. Thesis, Massachusetts
institute of Technology, MIT/LCS/TR-164, 1976.

15. Reitz, S. L., An Implementation of Multipgramming
and Process Management for a Security Kernel
Operatir System, M.S. Thesis, Naval Postgraeuate
School, lzbv.

16. Ross, J. L., Design of a System Initializaton
Mechanism for a Multiple Microcomputer, M. .
Thesis, Naval Postgraduate School, 19ES.

17. Saltzer, J. E., Traffic Control in a Multiplexed
Computer System, Ph.r. Thesis, Massachusetts
Institute of Technology, 1566.

1E. Swann, R., Fuller, S., and Siewiorek, I., "Cm*: a
Modular, Multi-microprocessor," in Procpedings
National Computer Conference, p. 637-644. AFIFZ,
191'7.

*11
13

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. library, Code e142 2
Naval Postgraduate School
Monterey, California 9394?

3. Department Chairman, Code 52
repartment of Computer Science
Naval Postgraduate School
Monterey, California 93940

4. Asst. Professor U. R. Todres, Code 52Zr
Department of Computer Science
Naval Postgraduate School
Monterey, California 9394b

5. LT.COL. R. R. Schell, Code 52Sj
Department of Computer Science
Naval Postpraduate School
Monterey, California 93940

6. Professcr T. F. Tao, Code 62Tv
Department of Electrical Engineerinz
Naval Postgraduate School
Monterey, California 9394e

7. IT Warren :. Wasson, USN
Commander Naval Electronics Systems Command
PME 12&
Washington, L.C. 2e360

6. CAPT J. L. Ross
552 AWACW/ADM
Tinker AFB, Oklahoma 73145

9. LCDR S. L. Feitz
NAVSEA TECH REP
St. Paul, Minnesota 30E-5

1Z IT P. A. Myers
NAVDAC
Washington Navy Yard
Washington, D.C. 2037i

4 136

